ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Декан факультета Материаловедение и металлургические технологии

М. А. Иванов

РАБОЧАЯ ПРОГРАММА к ОП ВО от 26.06.2019 №084-2505

дисциплины Б.1.09 Физическая химия для направления 22.03.02 Металлургия уровень бакалавр тип программы Бакалавриат профиль подготовки Пирометаллургические и литейные технологии форма обучения заочная кафедра-разработчик Материаловедение и физико-химия материалов

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 22.03.02 Металлургия, утверждённым приказом Минобрнауки от 04.12.2015 № 1427

Зав.кафедрой разработчика, д.техн.н., проф.

Заектронный документ, подписанный ПЭП, хранится в системе электронного документооборога ПОУПУ (Ожно-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Muxalino FL EHUN O ВЛАДЕЛЬЦЕ ПЭП Подкователь: mikhalilovgg

Г. Г. Михайлов

Разработчик программы, к.техн.н., доц., профессор

Электронный документ, подписанный ПЭП, хранитев в системе электронного документооборога (КОУРГУ)

Ожно-Уральского государственного университета

СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП

Кому выдан: Кумство NO С

Ю. С. Кузнецов

СОГЛАСОВАНО

Зав.выпускающей кафедрой Пирометаллургические процессы к.техн.н.

П. А. Гамов

1. Цели и задачи дисциплины

Целями изучения дисциплины являются: общетеоретическая подготовка студентов с учетом современного уровня развития химических наук, изучение основных закономерностей протекания химических и электрохимических процессов, обеспечение научного базиса для дальнейшего изучения специальных дисциплин и успешной будущей профессиональной деятельности, развитие у студентов навыков самостоятельной работы с научной литературой. Основные задачи дисциплины «Физическая химия»: — освоение студентами основных теоретических положений, изучение закономерностей проте-кание химических и электрохимических процессов, — приобретение знаний о физико-химических свойствах веществ, — выработка навыков практического использования полученных знаний, умений выполнять термодинамические и кинетические расчеты; получение навыков проведения простых экспериментов. В процессе изучения дисциплины закладывается общенаучный и профессиональный фундамент, формируются основные приемы познавательной деятельности и материаловедческое мышление, необходимое для творческой профессиональной деятельности.

Краткое содержание дисциплины

основы химической термодинамики, термохимия, термодинамика растворов, химическое равновесие, фазовые равновесия однокомпонентных и бинарных систем, поверхностные явления химическая кинетика, электрохимия.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине (ЗУНы)
	Знать: основные закономерности физико-
	химических процессов
ОПК-4 готовностью сочетать теорию и практику	Уметь:решать частные задачи, моделирующие
для решения инженерных задач	реальные процессы и делать выводы
	Владеть: оснвными понятиями, методами расчета и оформления решения полученных заданий
	1 1 1
	Знать: теоретические основы физической химии,
	выработка навыков практического использования полученных знаний
ОПК-1 готовностью использовать	Уметь: проводить химико-термодинамические и
фундаментальные общеинженерные знания	кинетические расчеты
	Владеть:современными представлениями о
	веществах в целом; понимать универсальность и
	информативность основных законов химии и физики
	Знать:специфику своей профессиональной
ОПК-2 готовностью критически осмысливать	деятельности
накопленный опыт, изменять при необходимости	Уметь:критически оценить свои
профиль своей профессиональной деятельности	профессиональные возможности
	Владеть:информацией об альтернативной
7774	деятельности
ПК-4 готовностью использовать основные	Знать:законы термодинамики, химической

понятия, законы и модели термодинамики,	кинетики и законы переноса
химической кинетики, переноса тепла и массы	Уметь:производить соответствующие расчеты по
	выше перечисленным законам
	Владеть:информацией по поиску необходимых
	для расчета параметров

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
	1
	ДВ.1.09.01 Коррозия и защита металлов,
	В.1.07 Методы анализа и обработки
E 1 00 01 Hooppoyyyyooyag yyyyg	экспериментальных данных в металлургии,
Б.1.08.01 Неорганическая химия	В.1.12.01 Металлургия черных металлов,
	В.1.11 Металлургическая теплотехника,
	В.1.12.02 Металлургия цветных металлов

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Б.1.08.01 Неорганическая химия	Химические свойства веществ (металлов и оксидов)

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 6 з.е., 216 ч.

Вид учебной работы	Всего	Распределение по семестрам в часах		
2 mg y roonen puccial	часов	Номер семестра		
		3	4	
Общая трудоёмкость дисциплины	216	108	108	
Аудиторные занятия:	24	12	12	
Лекции (Л)	12	6	6	
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	6	4	2	
Лабораторные работы (ЛР)	6	2	4	
Самостоятельная работа (СРС)	192	96	96	
Домашние контр. работы и оформление отчетов	112	56	56	
Подготовка к экзамену	80	40	40	
Вид итогового контроля (зачет, диф.зачет, экзамен)	_	экзамен	экзамен	

5. Содержание дисциплины

№ раздела	***	Объем аудиторных занятий по видам в
	Наименование разделов дисциплины	часах
		Всего Л ПЗ ЛР

1	Введение в дисциплину. Химия как часть естествознания. Связь химии с другими науками. Значение химии в изучении природы и в развитии техники. Основные понятия: атом, молекула, химический элемент. Массы и размеры атомов и молекул. Основные законы: закон сохранения материи, стехиометрия и стехиометрические расчеты, закон Авогадро, эквивалент, закон эквивалентов. Определение состава вещества по его химической формуле.	1	1	0	0
2	Основы химической термодинамики Термодинамическая система, параметры состояния системы. Три закона термодинамики, термодинамические потенциалы. Термохимия: законы Гесса и Кирхгоффа, энтальпия образования химических соединений.	2	1	1	0
3	Термодинамика растворов Способы выражения концентрации раствора. Термодинамические параметры растворов. Закон Рауля, закон Генри. Эбулиоскопия и криоскопия. Распределение вещества между несмешивающимся растворителями.	2	2	0	0
4	Химическое равновесие Обратимые гомогенные и гетерогенные реакции. Константа равновесия и стандартное изменение энергии Гиббса. Влияние внешних условий на химическое равновесие. Принцип Ле-Шателье – Брауна. Фазовые равновесия в однокомпонентных и бинарных системах	7	2	3	2
5	Химическая кинетика Скорость химической реакции. Влияние концентрации на ско-рость реакции. Константа скорости реакции. Простые и сложные реакции. Молекуляр-ность и порядок реакции. Влияние температуры на скорость реакции. Энергия актива-ции. Гетерогенные реакции.	6	2	2	2
6	Основы электрохимии Растворы электролитов. Диссоциация кислот, солей, оснований. Сильные и слабые электролиты. Константа и степень диссоциации. Закон разбавления Оствальда. Электролитическая диссоциация воды, водородный показатель Произведение растворимости. Гидролиз солей. Окислительно-восстановительные реакции и электрохимические системы. Понятие об электродных потенциалах. Нормальный водородный электрод и водородная шкала потенциалов. Уравнение Нернста. Потенциалы металлических, газовых и окислительно-восстановительных электродов. Гальванические элементы, аккумуляторы и их ЭДС. Электролизеры и использование их в металлургии. Электрохимическая коррозия.	6	4	0	2

5.1. Лекции

№ лекции	№ граздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Введение. Основные понятия и законы химии	1
1	2	Термохимия. Законы Гесса и Кирхгофа. Энтальпия образования химических соединений.	1
2	3	Растворы и их концентрация. Законы Рауля и Генри. Термодинамическая активность. Эбуллиоскопия, криоскопия. Растворы газов в жидкостях. Распределение, закон Нернста	2
3	4	Обратимость химических реакций. Закон действующих масс. Константы равновесия, определение констант по справочным данным. Расчеты параметров равновесия химических реакций. Влияние давления и температуры на равновесие реакций. Принцип Ле Шателье – Брауна, уравнения Вант-Гоффа. Фазовые равновесия в однокомпонентных системах. Уравнение Клаузиуса – Клапейрона. Диаграмма фазовых равновесий,	2

		температуры плавления и кипения чистых веществ. Фазовые равновесия в бинарных системах. Изобарические и изотермические сечения диаграмм состояния	
4	5	Химическая кинетика. Скорость химической реакции. Дифференциальные и интегральные кинетические уравнения необратимых реакций 1, 2 и 3 порядков. Экспериментальное определение порядка реакции. Влияние температуры на скорость реакций	2
5	6	Электрохимия. Растворы электролитов. Теория электролитической диссоциации слабых электролитов С. Аррениуса, константы и степень диссоциации электролитов. Особенности теории сильных электролитов	2
6	6	Электролитическая диссоциация воды, рН воды и растворов. Растворы солей в воде, гидролиз солей, трудно-растворимые соли, произведение растворимости. Расчеты электрохимических систем, законы Фарадея, электропроводность. Электрохимическая коррозия	2

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	,	Расчеты тепловых эффектов химических реакций с использованием следствий закона Гесса и закона Кирхгофа. Концентрация растворов.	1
2		Закон действующих масс, расчет максимального выхода продукта. Влияние температуры на химическое равновесие. Определение возможности протекания химических реакций.	1
2	4	Расчеты параметров равновесия однокомпонентных систем	2
3	· `	Формальная кинетика необратимых реакций. Определение порядка реакции. Влияние температуры на скорость реакции.	2

5.3. Лабораторные работы

<u>№</u> занятия	№ раздела	Наименование или краткое содержание лаборатоной работы	Кол- во часов
1	4	Равновесие твердого кристаллогидрата с парами воды при различных температурах	2
2	5	Кинетика реакции инверсии сахара	2
3	6	Измерение электропроводности растворов слабых электролитов	2

5.4. Самостоятельная работа студента

Выполнение СРС				
Вид работы и содержание задания	Список литературы (с указанием разделов, глав, страниц)	Кол-во часов		
Выполнение домашних заданий и оформление отчетов по лабораторным работам	Рекомендованная литература приведена в разд. 8 РПД	112		
Подготовка к экзамену	Рекомендованная литература приведена в разд. 8 РПД	80		

6. Инновационные образовательные технологии, используемые в учебном процессе

Инновационные формы учебных	Вид работы	Краткое описание	Кол-во ауд.
занятий	(Л, ПЗ, ЛР)		часов
работа малыми группами	1 1	деление на подгруппы 2-4 человека	6

Собственные инновационные способы и методы, используемые в образовательном процессе

Не предусмотрены

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины: Информация на лекциях и практических занятиях о широчайших возможностях оборудования в наших лабораториях для определения или подтверждения состава и строения различных веществ

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

7.1. Паспорт фонда оценочных средств

Наименование разделов дисциплины	Контролируемая компетенция ЗУНы	Вид контроля (включая текущий)	№№ заданий
Все разделы	ОПК-1 готовностью использовать фундаментальные общеинженерные знания	экзамен	Экзаменационные билеты
Все разделы	ОПК-1 готовностью использовать фундаментальные общеинженерные знания	проверка отчетов по лабораторным работам	методические указания к лабораторным работам №1, 2, 3
Все разделы	ПК-4 готовностью использовать основные понятия, законы и модели термодинамики, химической кинетики, переноса тепла и массы	экзамен	Экзаменационные билеты
Все разделы	ОПК-4 готовностью сочетать теорию и практику для решения инженерных задач	проверка выполнения семестровых домашних заданий	№1 и №2
Все разделы	ОПК-2 готовностью критически осмысливать накопленный опыт, изменять при необходимости профиль своей профессиональной деятельности	экзамен	Экзаменационные билеты
Все разделы	ОПК-4 готовностью сочетать теорию и практику для решения инженерных задач	экзамен	Экзаменационные билеты

7.2. Виды контроля, процедуры проведения, критерии оценивания

Вид контроля	Процедуры проведения и оценивания	Критерии оценивания
проверка	проверка решения задач (2 задания по вариантам	Зачтено: верно
выполнения	из соответствующих методических пособий для	выполненные расчетные
семестровых	заочного обучения); после проверки	задачи

домашних заданий	преподаватель засчитывает задания или направляет на переделку	Не зачтено: наличие ошибок в решении задач
проверка отчетов по лабораторным работам	проверка отчетов по лабораторным работам	Зачтено: правильно оформленные работы Не зачтено: отсутствие отчета
экзамен	индивидуальный билет с 4 вопросами (заданиями)	Отлично: выполнено верно от 3,5 до 4 заданий Хорошо: выполнено верно 3 до 3,5 заданий Удовлетворительно: выполнено верно 2,5 до 3 заданий Неудовлетворительно: выполнено верно менее 2,5 заданий

7.3. Типовые контрольные задания

Вид контроля	Типовые контрольные задания
проверка выполнения семестровых домашних заданий	Задания выдаются индивидуально по вариантам в соответствии с номером в списке группы. Варианты заданий и примеры решения в методических пособиях для самостоятельной работы студента №№ 1, 2, 3. Кузнецов, Ю. С. Физическая химия [Текст] Ч. 1 Термохимия, химическое равновесие, химическая кинетика учеб. пособие для заочного обучения Ю. С. Кузнецов и др. 2007.pdf; Антоненко, Кузнецов и др - ФХ Задачник 2013 г.pdf
лабораторным работам	Методика выполнения лабораторных работ и требования к отчету приведены в в методических пособиях для самостоятельной работы студента №№ 4,5 Штин С.В. Физическая химия Термохимия. Уч пособие к лаб. работам.pdf
экзамен	Примеры экзаменационных билетов приведены в приложении "Экзам. билеты. ФХ" Экзам билеты ФХ.doc

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Кузнецов, Ю. С. Физическая химия Учеб. пособие для металлург. специальностей вузов ЮУрГУ. Челябинск: Издательство ЮУрГУ, 1998. 343,[1] с. ил.
 - 2. Стромберг, А. Г. Физическая химия Текст учеб. для вузов по хим. специальностям А. Г. Стромберг, Д. П. Семченко; под ред. А. Г. Стромберга. 6-е изд., стер. М.: Высшая школа, 2006. 526, [1] с. ил.

б) дополнительная литература:

1. Жуховицкий, А. А. Физическая химия Учеб. для металлург. специальностей вузов А. А. Жуховицкий, Л. А. Шварцман. - 4-е изд., перераб. и доп. - М.: Металлургия, 1987. - 686 с. ил.

- 2. Основы термодинамики и термодинамика растворов учеб. пособие А. А. Лыкасов и др.; Юж.-Урал. гос. ун-т, Каф. Физ. химия; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2006. 50, [2] с. ил.
- 3. Поверхностные явления и химическая кинетика Учеб. пособие ЧГТУ, Каф. Физ.-хим. исслед. металлург. процессов; В. М. Жихарев, Ю. С. Кузнецов, Б. И. Леонович и др.; ЮУрГУ. Челябинск: Издательство ЧГТУ, 1996. 82,[2] с. ил.
- 4. Кузнецов, Ю. С. Электрохимия [Текст] учеб. пособие Ю. С. Кузнецов, А. А. Лыкасов ; Юж.-Урал. гос. ун-т, Каф. Физ. химия ; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2003. 68, [1] с. ил., табл.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Известия Вузов. Черная металлургия
- г) методические указания для студентов по освоению дисциплины:
 - 1. Физическая химия: сборник упражнений и задач / В.И.Антоненко, Н.В.Германюк, В.М.Жихарев и др. Под ред. Г.Г. Михайлова. Челябинск: Изд. центр ЮУрГУ, 2013. 445 с.
 - 2. Кузнецов, Ю. С. Физическая химия Текст Ч. 1 Термохимия, химическое равновесие, химическая кинетика учеб. пособие Ю. С. Кузнецов и др.; Юж.-Урал. гос. ун-т, Каф. Физ. химия ; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2007. 86, [1] с. ил.
 - 3. Кузнецов, Ю. С. Физическая химия Текст Ч. 2 Фазовые равновесия, термодинамика растворов, электрохимия учеб. пособие Ю. С. Кузнецов и др.; Юж.-Урал. гос. ун-т, Каф. Физ. химия ; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2008
 - 4. Антоненко, В. И. Лабораторный практикум по физической химии [Текст] учеб. пособие ЧГТУ, Каф. Физ.-хим. исслед. металлург. процессов ; В. И. Антоненко, В. М. Жихарев, Ю. С. Кузнецов и др.; ЮУрГУ. Челябинск: Издательство ЧГТУ, 1994. 89, [1] с. ил.
 - 5. Штин, С. В. Физическая химия. Термохимия [Текст] учеб. пособие к лаб. работам для физ.-металлург. фак. С. В. Штин; Юж.-Урал. гос. ун-т, Каф. Физ. химия; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2014. 39, [1] с. ил. электрон. версия

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 6. Физическая химия: сборник упражнений и задач / В.И.Антоненко, Н.В.Германюк, В.М.Жихарев и др. Под ред. Г.Г. Михайлова. Челябинск: Изд. центр $\text{ЮУр}\Gamma\text{У}$, 2013. 445 с.
- 7. Кузнецов, Ю. С. Физическая химия Текст Ч. 1 Термохимия, химическое равновесие, химическая кинетика учеб. пособие Ю. С. Кузнецов и др.; Юж.-Урал. гос. ун-т, Каф. Физ. химия; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2007. 86, [1] с. ил.
- 8. Кузнецов, Ю. С. Физическая химия Текст Ч. 2 Фазовые равновесия, термодинамика растворов, электрохимия учеб. пособие Ю. С. Кузнецов и др.; Юж.-Урал. гос. ун-т, Каф. Физ. химия ; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2008

- 9. Антоненко, В. И. Лабораторный практикум по физической химии [Текст] учеб. пособие ЧГТУ, Каф. Физ.-хим. исслед. металлург. процессов ; В. И. Антоненко, В. М. Жихарев, Ю. С. Кузнецов и др.; ЮУрГУ. Челябинск: Издательство ЧГТУ, 1994. 89, [1] с. ил.
- 10. Штин, С. В. Физическая химия. Термохимия [Текст] учеб. пособие к лаб. работам для физ.-металлург. фак. С. В. Штин; Юж.-Урал. гос. ун-т, Каф. Физ. химия; ЮУрГУ. Челябинск: Издательский Центр ЮУрГУ, 2014. 39, [1] с. ил. электрон. версия

Электронная учебно-методическая документация

№	Вид литературы	Наименование разработки	Наименование ресурса в электронной форме	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
1	Методические пособия для самостоятельной работы студента	Физическая химия: сборник упражнений и задач / В.И.Антоненко, Н.В.Германюк, В.М.Жихарев и др. Под ред. Г.Г. Михайлова. – Челябинск: Изд. центр ЮУрГУ, 2013. – 445 с.		Интернет / Свободный
2	Методические пособия для самостоятельной работы студента	Кузнецов, Ю. С. Физическая химия Текст Ч. 1 Термохимия, химическое равновесие, химическая кинетика учеб. пособие Ю. С. Кузнецов и др.; ЮжУрал. гос. ун-т, Каф. Физ. химия; ЮУрГУ Челябинск: Издательство ЮУрГУ, 2007 86, [1] с. ил.	-	Интернет / Свободный
3		Еремин, В.В. Основы физической химии. Теория. В 2 ч [Электронный ресурс]: учебное пособие / В.В. Еремин, С.И. Каргов, И.А. Успенская, Н.Е. Кузьменко. — Электрон. дан. — Москва: Издательство "Лаборатория знаний", 2015. — 589 с.	Электронно- библиотечная система издательства Лань	Интернет / Авторизованный
4	Дополнительная литература	1	Электронно- библиотечная система издательства Лань	Интернет / Авторизованный
5	Методические пособия для самостоятельной работы студента	Штин, С. В. Физическая химия. Термохимия [Текст] учеб. пособие к лаб. работам для физметаллург. фак. С. В. Штин; ЮжУрал. гос. ун-т, Каф. Физ. химия; ЮУрГУ Челябинск: Издательский Центр ЮУрГУ, 2014 39, [1] с. ил. электрон. версия	-	Интернет / Свободный

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

1. Microsoft-Office(бессрочно)

Перечень используемых информационных справочных систем:

Нет

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	314 (1)	Компьютер, проектор
Лабораторные занятия	333 (1)	Специализированная лаборатория для проведения учебных занятий. Имеющееся оборудование позволяет реализовать, в полном объёме все лабораторные работы, предусмотренные рабочей программой: сахариметр: кондуктометр, рН-метры, вакуумный насос; лабораторная посуда и приборы из стекла.
Практические занятия и семинары	414 (1)	Таблицы констант, справочные таблицы