Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Южно-Уральский государственный университет» (национальный исследовательский университет)

На правах рукописи

Allef

Маковецкий Александр Николаевич

ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ В МЕЖКРИТИЧЕСКОМ ИНТЕРВАЛЕ ТЕМПЕРАТУР НА СВОЙСТВА НИЗКОЛЕГИРОВАННЫХ ТРУБНЫХ СТАЛЕЙ

Специальность: 05.16.01 – «Металловедение и термическая обработка металлов и сплавов»

Диссертация на соискание ученой степени кандидата технических наук

> Научный руководитель: доктор физико-математических наук, профессор Мирзаев Джалал Аминулович

1	
	1.1
30	12
	1.2
- 40	1.5
	1 /
	1.4
	2 2 1
	2.1
	2.2
54	2.3
	2.4
	2.5
	2.6
59	3
59	3.1
	3.2
64	3.3
	3.4
	3.5
	3.6
« »	3.7
73	
	3.8
	-

	81
4.1	
4.2	82
4.3	
4.4	
4.5	-
	20104
4.6	
4.7	
4.8	
4.9	
4.10	
4.11	
5	
	20 13130
5.1	
5.2	

5.3	
5.4	
5.5	
5.6	
5.7	

4	
	152
	152
13 .	
	159
	159
13	184
13	
	198
13 :1050 ° -	
- , 83	30°
0,5	198
13 :1050 ° -	
- , 80)0°
0,5	208
13 :1050 ° -	
- ,	800
0,5	222
13 : 1050 ° -	
76	50 °
0.5	
.,	242
13 .	
······	245
	246
	256
20 2	258
20 2 .	

						•••	263
7.1.1			••••				
7.1.2						••••••	266
7.2		20	2				
7.2.1		20	2		:	900°	0,5 ,
		••••••	• • • • • • • • • • • • •		• • • • • • • • • • • • • • •		286
7.2.2		20	2		:	1050	° 0,5 ,
		•••••••••••••••••••••••••••••••••••••••		900 °	0,5 ,		290
7.3			• • • • • • • • • • • • • • •		• • • • • • • • • • • • • •		311
8					-		
	• •						313
8.1						13	
	16	•••••	• • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • •		313
8.2							
			20	••••••			318
8.2.1							321
8.2.2			•••••		•••••		321
8.2.3			•••••		• • • • • • • • • • • • • •		
8.3							
							326
8.3.1					•••••		327
8.3.2					•••••		328
8.4					-		

20	2	
8.4.1		
8.4.2		

•

··· , ·· , ·· , ·· , ·· , ··

•

•

•

-60° (KCV-60 50 / 2),

,

,

•

(

)

,

,

KCV,

-; . , :

Fe₃C,

•

.

(Mathcad)

- XVI -2008» (, 2008 .); - XVII -2009» (, 2009 .); - VII « » (, 2012 .); - XXI -2014» (, 2014 .).

•

•

.- . .

,

:

: «

,

5 1

2015

,

,

8

,

,

,

•

-

-

-

7

≫.

. .

~

«

20

,

.- . .

.- . .

•

,

•

,

. .

• •

« », :

. . , , , , • • • • ,...,..,.. • ••• , -

•

	,	8,		
112	,	27	, 188	1
	353	•		

•

1.

,

1.1

,

:

Pcm (

0,12%),

,

-

:

,

,

≤43% Pcm≤ 0.23%.

•

.

•

$$C = + \frac{Mn}{6} + \frac{(Cr + Ni + Cu)}{5} + \frac{Mo}{4}, \%$$
(1.1)

$$Pcm = C + \frac{Si}{30} + \frac{Mn + Cu + Cr}{20} + \frac{Ni}{60} + \frac{Mo}{15} + \frac{V}{10} + 5B, \%$$
(1.2)
C, Mn, Si, Cr, Ni, Cu, Mo, V, B -
, .%.
,
(G = 338,1...560), (KCV-50 29,4 / ²), -
(KCV-60 29,4 / ²), - (
50%), (KCV-50 29,4 / ²), - (

•

,

,

•

[1].

. 1.1 -

2

)

/

[3,

(

/

,

55-60

. 1.2 -

1 –

- ; 2 -; 3 - ; 4 -

•

,

•

:

; 5 –

10

16

•

[3]

,

13

•

:

NACE TM 0177

CTR=0.28%.

, 9

.

10

•

•

10 . . 1.7 10

,

,

)

_

[10]

1200°, 900°,

660°.

10

.

20

273 18

(

•

,

-60° 900°,

900°

900°.

[10] , « • , , . . . [10] ≫. : « 1-3 Mn, C, Al, S α- γ-, . . ≫. [11, 13] , +, KCV-70, , , 20 Ø114 9 . , ([11, 13]). , , $\sigma = 539$, $\delta_5 = 32,5\%$, KCV-70=251 / 2, (σ =365 , $\sigma_{th}=0.8\sigma$, $K_{1ssc}=51 \pm 6.2$) , $(\sigma = 397)$, $\sigma = 560$, $\delta_5 = 29,7\%$, KCV-70=251 / ², , $\sigma_{th}=0.75\sigma$, $K_{1ssc}=43\pm 6.7$). [11, 13] [10], ,

770°)

 680° .

,

(

NACE (5%NaCl, 0.5%CH₃COOH).

. 1.8.

. 1.8 -

NACE

;

[15] 40

65

25

: σ_{th} 0,85 σ ,

:

0.25% Mo, 0.01-0.04% Al, 0.05-0.14%, 0.15-0.35 %Si, 1.0-1.5 %Mn, 0.08 %V, 0.04 %Nb, 0.25 %Ni, 0.25 %Cu, 0.005 %S, 0.020 %P,

≤0.38,

,

KV-40 150

80%.

API 5L [1].

)

25 : σ_{th} 0,72 σ .

CLR≤10%, CTR≤3%.

650-800 KCV-20 -80-/ ². 100 [16] ,

(). / ² (3,5-5 3/ 180-250 0,35...0,50). 17

.

 $530\text{-}630^\circ$. 1040°,

870-

Ø1020 9...11

,

. 1.9 -

•

17

16 , 17 1

,

17, 18].

•

720 ³/

[16,

,

. 1.10 -

17 1

:

, (KCV) – C =0,37%; 0,01%Al; – =0,37%; 0,06%Al; =0,46;0,06%Al

.

[19]

16

600-730°

920°

1 .

[5, 20, 21] $\varnothing 1420 \ 14$ 16 900-940° • $650\text{-}660^\circ$. 2 . : 2, , δ₅=21...23%, KCV-15=147...169 / σ=637...647 , σ=735...764 100%. 17 1 , 16 . , [10, 22, 23] . , 13 1 - , 10 2 , 09 2 17 • [10], [22]. [9] 1% [10, 11]. , (.) , (0.9-1.8% Mn) , API 5L

,

,

1.65% [1].

[11].

,

,

,

90°

[20],

(

,

20 ppm

80 ppm,

[17].

,

•

,

1.2

•

,

,

•

•

30

[24].

,

•

•

,

•

48- 60 [13].

48- 60

,

.

,

,

. 1.2.1 -

[25]. I – , II –

•

:

,

,

,

•

=f(T

,

,

•

1

. .

)

•

,

,	2

Mitsutsuka	$\Gamma = 2,292 \cdot 10^8 \cdot W^{0.616} \cdot \left[\int_{s}^{-2.445} \right]$	[28]	<i>W</i> ,
			$(10\div2000)$ [_s ,°C (400÷800)

Sasaki	$\Gamma = (708 \cdot W^{0.75} \cdot [_{s}^{-1.2} + 0.116) \cdot 1163$	[29]	W,
			[,,°C(
			1200)
Ishiguro	$\Gamma = 0,581 \cdot W^{0.451} \cdot (1 - 0,0075 \cdot [_{w}) \cdot 1163$	[30]	<i>W</i> , <u>-</u>
			[_w ,°C
Nozaki	$\Gamma = 1,57 \cdot W^{0.55} \cdot (1 - 0,0075 \cdot [_{w}) \cdot \frac{1}{a} \cdot 1163$	[31]	W,
			[_w ,°C
			a=4
Bolle	$\Gamma = 0,423 \cdot W^{0.556} \cdot 1163$	[32]	<i>W</i> , <u>2</u>
Shimada,	$\Gamma = 1,57 \cdot W^{0.55} \cdot (1 - 0,0075 \cdot [_{w}) \cdot 1163$	[33]	W,
Mitsutsuka			5
Bolle,	$r = 0,360 \cdot W^{0.556} \cdot 1163$	[34]	<i>W</i> ,—
Moreau			
Mizikar	$r = 0,0776 \cdot W \cdot 1163$	[35]	$W, -2 (3 \div 23, 3)$
(1)			[_s,°C(
			1094)
Mizikar	$r = 0,1 \cdot W \cdot 1163$	[35]	W,
(2)			[_s,°C(
			1094)
Hodgson	()-2.455	[36]	W,
	$\Gamma = 3,15 \cdot 10^{6} \cdot W^{0.616} \left[700 + \frac{\left[\frac{1}{s} - 700 \right]}{\exp\left(\frac{1}{s} - 700 \right) + 1} \right] \times$		[_s ,°C(150÷900)

$$\frac{1}{Viscorova} \times \left(1 - \frac{1}{exp\left(\frac{[_{s} - 250}{40}\right) + 1}\right) \cdot 1163}{\Gamma = [190 + tanh(\frac{W}{8}) + (140 \cdot W \cdot (1 - \frac{W \cdot \Delta T}{72000}) + \frac{[37]}{3.26 \cdot \Delta T^{2} \cdot (1 - tanh(\frac{\Delta T}{128})))] \cdot 1,163} \qquad \qquad \begin{bmatrix} 37 \\ \Delta \\ \end{bmatrix} W, -\frac{1}{2} \cdot (3,8 \div 30) \\ \Delta \\ \Delta \\ \end{bmatrix}$$

; $[_s, [_w, \Delta]$ -

1163 (1 / $=1,163*10^3$) 1,163 (1

•

/ =1,163).

:

,

.1.2.2 , .

)

. 1.2.2 -

 $(1 / =1,163*10^3)$

[42-47]

[43]

:

860-900° 150-80°

 $\Gamma \approx 3,35 \cdot 10^5 R, \qquad 2.2$

Температура поверхнасти

. 1.2.3 -

3

[43]

,

[44]

:

36 2 40 Ø63-73 3,5...11

•

[44]

:

0

•

• •

: $\frac{\partial T}{\partial t} = a \cdot \frac{\partial^2 T}{\partial h^2},$ 2.4

 $T - ; t - ; h - , a = \frac{}{c \cdot ...} - ; m - ; ... - ; ... - ; ... - ... 720-360^{\circ}$

 $-2,8*10^3$ ____,

•

 $6*10^3 - 2$.

,

,

38

,

3

•

•

-

5,8*10⁵

[45]

. 1.2.5 -

Ø1420 14

:

;2-

.

1 –

[46]

•

2-2,5

r

,

,

1.3

•

,

•

(1... 3)

,

,

,

-

[11 50 51]

[11, 50, 51]

,

,

[50, 52]

[49].

,

[11, 48].

. [53] , 40-100% 30 3. [54] - 28 3, (36°) , 50%

•

,

[55]

. 1.3.1) (

1 3 -,

30

•

+

900°,

15 .

,

,

». . [57] 35 :

930°; 2 –

•

900°

: 1 -930°.

26 2

[58]

2

26 2

° / 300 ° /

. 1.3.5 -

,

930°

300 $^\circ$ / ; 2 – 200 $^\circ$ / ; 3 – 2

37 2 , 37 24

•

3.

,

.

15 [60]. ,

, . [61] 10 7,

,

+

[61]: + (1, 2) (3,

4); - , , - (+) . $(-1+80)-(-3-30)^{\circ}$, -(+) . (+

 $(500-1)^{\circ}$. [62] , 60-90% . . [51]. , [51]

•

;

c (0,12-0,15%).

15% « » . , 3

,

08

,

Fe-C -

,

[65, 66]

. .

• •

5...90% - .

,

,

•

. 1.3.8 -

35° / [67]

•

1

. . [69]

10

•

•

,

[8, 9, 10, 11,

12, 13, 62, 63, 72, 73, 74].

[8, 62].

•

•

,

 \rightarrow

,

,

1.4 , , • , • : _ _ ; ; _ , ; -; -.

2.1

. C

. 2.1.1

•

	, %										
	С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	Nb
20	0,17	0,17	0,45	0,015	0,015	0,25	0,25	0,25	0,02	0,008	0,01
	0,24	0,37	0,65						0,05		0,03
13	0,13	0,17	0,45						0.02		
	0,17	0,37	0,65	0,015	0,015	0,25	0,25	0,25	0,05	0,008	-
20 2	0,17	0,17	1,3			0,8			0,02		0,03
	0,22	0,37	1,6	0,015	0,015	1,3	0,25	0,25	0,05	0,008	0,06

2.2

U-40 30 /· ² 1497, 5- ;

•

2.

1.

5003-0,3

10 10 55 V- 9454;

3.			4543
		• •	
4.			-
5004	9012;		
5.			-
500	9013;		
6.			-3

2.3

9450;

100

•

500/12- . $\pm 0,5^{\circ}$. 20 13 20 2 : 1050 $^{\circ}$, 1) 30 (,); 900°, 2) 30 •• 900 ° 13 3)

,

,

454 24 20 2

24 150 150 .

920±10°,

;

•

•

(740, 750, 760, 780, 800, 820, 840, 860°) $\pm 10^\circ$, $600{\pm}10^\circ$

2.4

.

,

«Linseis L78 R.I.T.A.».

700 °

,

10°/, 700° 0,1°/. : (900, 830, 800, 760 755°); 5 30 ;

•

•

5...70 ° /,

5,

10, 20	40 ° /		3
10 .		70 ° /	

•

$$=\frac{L - L + L \cdot s \cdot (-)}{\Lambda \cdot L_0}, \%$$
2.4.3

3

 $100 \cdot \Lambda \cdot L_0$

х_

 $L_{100\%}$,

$$\Lambda \cdot L_0 = \frac{L_0 - L_{100\%}}{100}, \qquad 2.4.4$$

,

,

•

57

5640.

•

13,5

13

) 325 12

(

•

,

0,06 -1.

•

•

-

(.

3.1

13

3.1.1.

,

3.1.1

,

	, .%						
		Mn	Si	S	Р	Cr	V
13	0,15	0,6	0,2	0,005	0,010	0,6	0,05

,

:

15 ,

[75]

,

15 .

3.2

 $\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} = \frac{1}{a}\frac{\partial}{\partial \ddagger}, \qquad (3.2.1)$

$$(r = r_1):$$

$$\frac{\partial}{\partial r} \Big| r = r_1 = 0;$$

$$(r = r_2)$$

$$(r = r_2)$$

•

 $- \left. \right\} \frac{\partial}{\partial r} \left| r = r_2 = r \left((r_2, \ddagger) - f \right),$ (3.2.3)

:

$$(r, \ddagger = 0) = 0,$$
 $T_0 - .$
(3.2.4)

(3.2.1)

 \sim_n .

,

[76]:

,

:

,

Bi

,

•

n

$$\frac{V_0(\sim_n)}{W_0(\sim_n)} = \frac{\sim_n}{Bi},$$
(3.2.6)

$$V_0 \quad W_0 \qquad :$$

$$V_0(\sim_n R) = \left(Y_0(\sim_n R)I_1(\sim_n \frac{r_1}{r_2}) - I_0(\sim_n R)Y_1(\sim_n \frac{r_1}{r_2})\right)$$
(3.2.7)

$$W_{0}(\sim_{n}R) = \left(Y_{1}(\sim_{n}R)I_{1}(\sim_{n}\frac{r_{1}}{r_{2}}) - I_{1}(\sim_{n}R)Y_{1}(\sim_{n}\frac{r_{1}}{r_{2}})\right)$$
(3.2.8)

(7) (8) (6)
$$R = 1$$
.

$$C_{2n} = \frac{2Bi \cdot V_0(\sim_n)}{\left(Bi^2 + \sim_n^2\right) \cdot V_0^2(\sim_n) - 4/f^2},$$
(3.2.9)
(5.1)

n , (1) :

$$T_{i,k} = T_{i,k-1} + a \cdot \Delta t \cdot \left(\frac{T_{i+1,k-1} - 2 \cdot T_{i,k-1} + T_{i-1,k-1}}{\Delta x^2} + \frac{1}{D - i \cdot \Delta x} \cdot \frac{T_{i+1,k-1} - T_{i-1,k-1}}{2 \cdot \Delta x} \right), \quad (3.2.10)$$

$$i=1...n - , - , n - ,$$

$$\Delta x - , D -$$

, Δt -

$$T_{i,0} = T_0$$
(3.2.11)

$$T_{n,k} = T_{n,k-1} + a \cdot \Delta t \cdot \left(\frac{T_{k-1} - 2 \cdot T_{n,k-1} + T_{n-1,k-1}}{\Delta x^2} + \frac{1}{(D/2)} \cdot \frac{T_{k-1} - T_{n-1,k-1}}{2 \cdot \Delta x} \right),$$
(3.2.12)
$$T -$$

$$T_{k-1} = T_{n-1,k-1} - 2 \cdot \Delta x \cdot \frac{r}{3} \cdot \left(T_{n,k-1} - Tf\right)$$
(3.2.13)

$$T_{1,k} = T_{1,k-1} + a \cdot \Delta t \cdot \left(\frac{T_{2,k-1} - 2 \cdot T_{1,k-1} + T_{k-1}}{\Delta x^2} + \frac{1}{\left(\frac{D}{2} - s\right)} \cdot \frac{T_{2,k-1} - T_{k-1}}{2 \cdot \Delta x} \right)$$
(3.2.14)
s - , T -

:

$$T_{k-1} = T_{2,k-1}$$
 (3.2.15)
, (15) (2).

,

[78]:

$$\Delta t \le \frac{\Delta x^2}{2 \cdot a}$$
(3.2.16)
(8)
(10)-(15)

15 [75].

(3.2.10).

•

[24, 79]

,

(5.5).

,

 $r = G \frac{C_1 \cdot T_{m1} - C_2 \cdot T_{m2}}{F \cdot \Delta \ddagger \cdot \left(\frac{T_{n1} - T_{n2}}{2} - T_f\right)},$ $G - , T_{m1}, T_{m2} - , F - , T_1, T_{n2} - ,$ (3.3.1)

,

,

. 3.4.2

(3.2.10)

•

•

(3.2.5)

800-500°

$$2000 - (2326 -).$$

(3.3.1)

(3.2.5).

. 3.4.4

750°

750-500°

$$2000 - (2326$$

2000

,

2.

. 3.4.4

[36, 28, 29, 37].

80],

1,3-2

•

[92].

3.5

,

:

,

,

(3.2.1)

•

n

, (3.2.1)

$$T_{i,k} = T_{i,k-1} + a \cdot \Delta t \cdot \left(\frac{T_{i+1,k-1} - 2 \cdot T_{i,k-1} + T_{i-1,k-1}}{\Delta x^2} + \frac{1}{D - i \cdot \Delta x} \cdot \frac{T_{i+1,k-1} - T_{i-1,k-1}}{2 \cdot \Delta x}\right)$$
(3.5.1)

:
$$T_{i,0} = T_0$$

:

$$T_{n,k} = T_{n,k-1} + a \cdot \Delta t \cdot \left(\frac{T_{k-1} - 2 \cdot T_{n,k-1} + T_{n-1,k-1}}{\Delta x^2} + \frac{1}{(D/2)} \cdot \frac{T_{k-1} - T_{n-1,k-1}}{2 \cdot \Delta x} \right),$$
(3.5.3)

$$T_{k-1} = T_{n-1,k-1} - 2 \cdot \Delta x \cdot \frac{r}{3} \cdot \left(T_{n,k-1} - Tf\right);$$
(3.5.4)

$$T_{1,k} = T_{1,k-1} + a \cdot \Delta t \cdot \left(\frac{T_{2,k-1} - 2 \cdot T_{1,k-1} + T_{k-1}}{\Delta x^2} + \frac{1}{\left(\frac{D}{2} - s\right)} \cdot \frac{T_{2,k-1} - T_{k-1}}{2 \cdot \Delta x} \right),$$
(3.5.5)

$$T = T_{2,k-1} - 2 \cdot \Delta x \cdot \frac{r}{3} \cdot \left(T_{1,k-1} - Tf\right)$$
(3.5.6)

•

:

3.6

T -

,

•

273 9 20

•

•

« ».

[26].

$$r = \frac{1.2}{D^{0.25}} \cdot (T0 - Tf)^{0.25} + v \cdot \cdot \cdot \frac{\left(\frac{T0 + 273}{100}\right)^4}{T0 - Tf} - \left(\frac{Tf + 273}{100}\right)^4}{, \qquad (3.6.1)$$

$$v = - , , = 4.9 , \qquad , = 1.5 , \qquad , =$$

$$\Delta H = 16 - (67 -)$$
.

(3.2.5), (3.2.10)

 ΔT -

(3.2.10), (3.6.1)

3.6.1.

•

. 3.6.1

•

$$Bi = \frac{r}{34,7} \cdot \left(\frac{0,273}{2}\right) = 0,338$$
(3.6.3)

:

•

,

•

•

150000-		<u> </u>		Bi>>100.	
	² •	•	,		
			3.7.1	3.7.1	

3.7

2	7	1
3	1	T
_		

	1			,		
			, ,			
,	89	114	159	219	426	
12	124/123	121/121	118/118	116/116	114/113	
14	95/94	92/92	89/89	87/86	85/84	
16	75/75	72/72	69/69	68/67	65/66	
18	61/60	58/58	56/56	55/54	52/52	
20	51/50	49/48	46/46	45/44	42/43	

° /

. 3.7.1

20 20

.

 \rightarrow

,

(. 3.7.2). 14

•

[8, 48]

. 3.7.2

15 , [16]

_

,

Mathcad

•

•

,

•

. 34

. ,

20

,

(2000 <u>-</u>). 3.7.2 . 3.7.4.

3.7.2

° /
$$r = 2000 - (2326 -)$$

	,							
,	89	114	159	219	426			
12	24	23,5	23	22,5	22			
14	21	20	19	18,5	18			
16	18	17	16	15,5	15			
18	16	15	14	13,5	13			
20	14	13,5	13	12,5	12			

. 3.7.4

 $r = 2000 - \frac{1}{2}$

4.

. 3.7.5

1.

2.

•

3.7.5

4.

(+)- .

•

-

4.1

(α+γ)

,

• , [49-51, 56, 57, 59-68, ,

,

,

•

70-74].

(KCV-60).

,

(

,

,

,

(

3)

,

,

[66, 83]

:

4.2

,

,

,

«

4.2.1.

								13		
							, %			
С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	V
0.16	0.3	0.53	0.012	0.007	0.60	0.05	0.06	0.04	0.007	0.06

4.2.1

[84].

•

1

-60°. KCV-60. , «

,

,

,

,

,

»

,

82

,

,

»

,

,

,

,

+

13

,

≫.

4.3

)

•

«

« » « »

84

1050° (),

755 (), 770 (), 800 (), 830 () 860 ()

600°, 1.

. 4.3.2), (

,

,

,

,

; , ,

,

5 800° , $70\ensuremath{\,^\circ}$ / . 5

, , , , • 760 715, 660 615°. $_{1}=746\pm5^{\circ}$.

,

,

• [49] ,

,

,

,

_

. 4.3.2

[88, 85]

•

•

,

((

)

3)

,

,

770 (. 4.3.2) 800° (. 4.3.2)

, , ,

88

1, γ- ,

,

. , 740° (₁)

, – . , 1 _

755° . ()

.

(. 4.3.2 ,)

770 800°, 755°.

- () (

. 4.3.3 ,).

. 4.3.3.

900°,

 600° , 1 : -755, -770, -800, -830, -845, -860.

.

: (2 20) ||(011) .

, 770° (.4.3.4), ,

1050°,

93

- (221) ||(101)

 600° , 1 : –

830°

[88], ,

,

13

 600^{o} , 1 : , –

,

770°

0.2

[88]. . 4.3.6 (,)

96

«

,

(. 4.3.7)

770°

•

1050°,

0.06 -

»

(. 4.3.7

).

1050°,

,

•

. 4.3.8 .

. 4.3.8.

,

« ». , (. 4.3.9).

(. 4.3.9). . 4.3.9

,

,

99

100

13 , 830°

 600° , 1 : –

,

 $900^{\rm o}$,

1050°

(. 4.3.1) 800°

. 4.3.1 .

4.3.10)

800°,

•

900°.

•

•

,

(

.

740° (KCV⁻⁸⁰=270 / 2), . .

,

•

KCV⁻⁸⁰.

,

13

101

,

,

,

40

,

,

. 4.3.10.

4.4 1. 600° 1050 900° 13 3. KCV⁻⁸⁰ $_{1}...800^{\circ}$, 2. : ,) , (), ;) 1050° 770°; 900° _ ,) ,) (_ ;)

•

,

,

,

•

103

219

•

20

•

•

•

-

12

,

, (+)

,

4.5.1

•

4.5.1

	, %										
14-158-	С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	V
113-99	0,18	0,27	0,46	0,003	0,008	0,17	0,11	0,13	0,031	0,009	0,04

•

,

~

≫.

4		6	1
	٠	U.	• •

	4.6.1			
			KCV-50,	
σ,	σ,	5.0/	/ 2 (
		0, %		., %
)	
338-470	502-627	≥ 25	≥ 39,2	≥ 50
				4.6.2 .

105

4.6.2

Ι	σ,	σ,	δ, %	KCV-50,	., %	
	1:		920°	, 40	+ 780°,	30
		+	69	90°, 40		
	338	510	32	160±120		8
		2:	760°, 3	+ 0	690°, 40	
	329	510	29	14±2		6
		3:	780°, 3	0 +	730°, 40	
	314	495	31	13±2		6-5
		4:	820°, 3	0 +	690°, 40	
				94±25	50	7-6

- 50 °

,

13-14 / ². 760-780 820° / ². •

,

,

,

,

94

106 160 / ².

50%. -50°

4	.6	.3	

II			δ %	KCV-50,		
	σ,	σ,	δ, %	/ 2	., %	
		5:	780°, 1	5 +	690°, 40	
	309	471	29,5	14±0,03		6
		6:	780°, 3	0 +	690°, 40	
	343	520	30	13±1		6
		7:	780°, 1	,5 +	690°, 40	
	343	510	31,5	30±6		6-7
		8:	780°,	3 +	690°, 40	
	314	500	31	18±4		6

α- , V-50.

•

,

,

/ ²,

13 30

^{4.6.3}

4.6.4

III	σ,	σ,	δ, %	KCV-50,	., %	
		9:	840°, 3	0 +	690°, 40	
	412	559	29,5	284±50	85	11
		10:	900°, 3	0 +	690°, 40	
	422	554	28	265±25	85	10

Λ	•
-	٠

3

4.

4.7

,

,

•

,

,

(. 4.7.1).

,

,

,

,

920°

920° (.4.7.1) (.4.7.2),

780°

4.7.2

20 920°, 780°, 690°

Fe-C,

110

,

,

 760° ,

4.7.4

690°

20

4.7.5 690°.

111

500

780°, - 690°, (15, 30, 1,5 780°

: 4.7.6, 4.7.7, 4.7.8.

5

)

).

•

(

4.7.6

15

20

690°

780°

30

690°

780°

- 50 °

.

840° (. 4.7.9).

 $r \rightarrow x$

114

(. 4.7.10).

20

900°

4.7.11

4.7.11 -

4.7.12 -

900° 840°

,

840°.

,

,

,

(. 4.7.13).

(. 4.7.14).

4.7.15 -

4.7.15). . .

,

[56],

[84].

4.8

20. 1)

- 2) ,
- , 3) 3
- 3.
- 5)

•

,

3

- KCV-50=30 / ²
 - $760-780^{\circ}$ 820° , . .
 - ,
 - - 265-285 / ²,
 - ,
 - .

(

•

•

•

13

,

4.9.1.

•

12 12 70 ,

•

	, %										
	С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	V
13	0,16	0,30	0,53	0,012	0,007	0,60	0,05	0,06	0,04	0,007	0,06

c 13 , 40-1050° , 40-900°. 800, 830, 845 860°, 40 , 600° .

HB₃₀₀₀,

-

•

KCV-80,

4.10 4.10.1 , •

,

•

. 4.10.1 .

.

. 4.10.2

,

. 4.10.1 ,

. 4.10.2 — - , -), 900° - Δ, 600° , 1 .

755° 13

(.4.10.3).

770-800°

(.4.10.4 ,).

; 4.10.5 ,),

,

		α-			,	
()	(. 4.10.4	!
						,
	(800°)					
	[90].		. 4.1	10.4		

125

,

γ-

126 845 860°

,

γ-.4.10.4 , ; 4.10.5 ,). (. 4.10.6 ,

,

. 4.10.6

		:	1050° (-	, -
, –),	900° - Δ ,	600° , 1 .	

KCV = f(HB)

KCV - 80

. . [88, 91]

,KCV = f(HB).

,

,

,

,

,

13

4.11

1) : , , , 1050°

. ,

, , , , l, ,

1050 900°,

,

1.

4)

2)

•

3)

1, · · · , 5) .

6)

1050°,

- ,

•

,

•

,

•

•

-

20 13

•

5.1

13 20 ,

,

•

5.1.1.

5.1.1

13 20

	, %											
	С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	V	Nb
13	0,13	0,25	0,51	0,012	0,006	0,65	0,05	0,05	0,04	0,006	0,04	-
20	0,2	0,2	0,55	0,015	0,012	0,10	0,05	0,05	0,04	0,008	0,04	0,02

•

1

900 °

2.4.

5.2

•

5.2.1

, 900 °

5-70 ° / .

, /						
			90	° 00		
5	741,6	868,3	126,7	770,4	608,8	161,6
10	747,5	860,1	112,6	773,0	613,7	159,3
20	743,8	856,6	112,8	774,0	544,0	230,0
40	750,7	867,9	117,2	761,7	464,3	297,4
70	740,3	871,1	130,8	730,0	357,7	372,3

. 5.2.1.

117 °

, $0,85~\%/^{\circ}$. .

, 800 ° 13 40 % , 863 °

•

5.2.1

			(°),		20 ,				
		9	° 00	5-70	5-70 ° /				
° / ,									
			0 °						
5	729,9	835,2	105,3	767,3	606,2	161,1			
10	730,1	836,6	106,5	734,6	593,4	141,2			
20	730,2	839,7	109,5	730,3	567,6	162,7			
40	728,0	836,4	108,4	730,0	542,4	187,6			
70	729	841	112	707,2	507,0	199,8			

. 5.2.2

.

,

,

,

_

20

,

 $\alpha {\rightarrow} \gamma$

 $\alpha \rightarrow \gamma$

,

,

VC.

,

γ**→**α

134

774 730°;

•

 r_3

10 %

30°

•

,

:

•

•

•

5-10 ° / , . 5.3.1, 4, 5) 700 (20, 40 ° / (. 5.3.1, 0 80 %, 3, 2) 60 40 % 70°/(.5.3.1, • 1)

700 ° 10 %.

,

,

•

. 5-10 ° / 50 % 31-41 \mathbf{r}_3 •• 40-70 ° / $73\text{-}88^\circ$.

> 200° (161 373 ° .) r₁, , (70°/) , 600° .

> > ,

. 5.3.1,

,

,

 70° / 90° 500° ,

,

10 %

.

 \mathbf{r}_1

100 %

,

150°

•

. 5.3.2

•

,

,

•

730°,

 450° .

,

,

r₁,

,

[93]

13

, ° = 520 - 320·0,13 - 45·0,51 - 30·0,65 - 20·0,05 - 5(0,25+0,05) = 433° .

20 : , ° = 520 - 320.0,2 - 45.0,55 - 30.0,1 - 20.0,05 - 5(0,2+0,05) = 426° .

$$r_1$$
 , 70° /

,

:

. 5.3.3 20 : 1 - 70 ° / , 2 - 40 ° / , 3 - 20 ° / , 4 - 10 ° / , 5 - 5 ° / .

20

 \mathbf{r}_3

•

767-707 °

•

13

,

,

,

,

;

•

.5.3.5

13

 $900\,^\circ$.

,

•

20

20

900°.

13

•

•

.

20

; 70°/ 5.4 13 20 • 900° • , 5°/ _ , . 5.4.1 , 5.4.2). 20-30 (20 13 ~15%, 20%. $10\ensuremath{\,^\circ}$ / (. 5.4.1 , 5.4.2), 20° / . 5.4.1 , 5.4.2). 13 20 25-30% (60-65%. 40 ° / ~40% (.5.4.1 , 5.4.2). , 10-15

,

•

,

,

, 70°/

80-85%,

5.4.2).

•

(.5.4.1 ,5.4.2).

10-15% (.5.4.1 ,

. 5.4.1

900°

40 ° / , -70 ° / ; 500

. 5.4.2

20

:
$$-5 \circ /$$
, $-10 \circ /$, $-20 \circ /$, -40

900°

°/, -70°/; 500

900° –) 13 40 °C/ 5 °C/ , 20000;) , 30000.

13	900°	70°/.
	(.	5.4.4).
	(. 5.4.4)	, ,
(.5.4.4).		
13 ,	70°/	900°.
5.4.4).		(.

150 $5 \ ^{o}C/$, 20 900° 13 -• , 40 °C/ 20 5-10%. , 13 . , 70 °C/ 20 900° , -(<5%). 13 13 20 . 5.5 5.5.1. , 13 , 900 ° 154 / ² (5 204 / ² (70°/). 20 •/) 900 ° 5°/) 208 / ² 159 / 2 (70°/). (, , 13 70° / ,

900 °					
				, 0	/
	5	10	20	40	70
13	154	167	194	203	204
20	159	165	183	201	208

5.6

-

13

13

•

20

70° / 5-10%,

•

20 – 5%.

•

(+)

•

. 5.7.2.1).

•

•

5.7.1 4.5 «

•

20»,

13

+•

_

13 •

5.7.2

5.7.2.3-5.7.2.5.

. 5.7.2.3 , , ,

•

13

. 5.7.2.3 . , 1

,

,

,

900 °

(

. 5.7.2.5

-

(101) Fe₃C.

•

900°

15-20 %, . 5.7.2.2

,

,

,

, 1-2 , . 5.7.2.6 , .

, .5.7.2.6 .

, 13 . 900 ° ,

•

,

-

13

•

. 5.7.2.1-

500

13

900°

,

,

. 5.7.2.2-

13

900°

500

 - -	;	,	20000;	(110) (10-1)	, 20000; , 20000;
. 5.7.2.3 -			13		900°

-	, 20000;			
-	(112)	, 20000;		
-	, 20000;			
-	(013)	, 20000;		
. 5.7.2.4 -	13	900°		

_		,	15000;		
-	,	,	30000;		
-				,	30000;

. 5.7.2.5 -

13

900°

_		,	10000;
-		,	20000
-	,	,	15000;

. 5.7.2.6 -

13

900°

5.7.3	13 .	
	·	. 5.7.3.1-
5.7.3.23,		
5.7.3.2.1.		

 $\alpha \leftrightarrow \gamma$

57	31
2.1	• J • I

13						₁ = (727-
745) °.				738°.		3
	8	863°,		83	80 °	
			γ-			
	5.7.3.22,	5.7.3.23			$\alpha \rightarrow \gamma$	
	900 °	13			-	
						(.
5.7.3.1).						(760, 800
830°)			1-	3		1

22, 62 92 ° . . . 5.7.3.23

760°, 800° 830°

,

,

, 1 (,

,

•

—

,

159

).			γ-
	13					
				1•		
30			,			1,
		$\alpha \rightarrow \gamma$,	760 °
			13 %,			
						43 %, .
5.7.3.22 .			$\alpha \rightarrow \gamma$		760 °	
				:		
	,		15-20	. α <i>→</i> γ	/	
•						3
	$\alpha \rightarrow \gamma$					
	,				13	830 °
				: 7	2 96 %,	. 5.9.1.22 .
			760	, 800 83	30 °	
13		40, 74	100 %		, . 5.7.3	3.23.

,

,

830°; - 800°; - 760°

. 5.7.3.1 –

_

. 5.7.3.2 -

830°,

13

.

900 ° 5 ° /

. 5.7.3.3 -

13 . 900 ° 830°, 20°/

•

13ХФА 900 вода 830 40

. 5.7.3.5 -

13 . 900 ° 830°, 70°/

13ХФА 900 вода 800 5

. 5.7.3.6 -

13 800°,

.

900 ° 5 ° /

13ХФА 900 вода 800 10

. 5.7.3.7 -

800°,

13

.

900 ° 10 ° /

13ХФА 900 вода 800 20

. 5.7.3.8 -

13 800°,

.

900 ° 20 ° /

13ХФА 900 вода 800 40

. 5.7.3.9 -

13 . 800°,

900 ° 40 ° /

. 5.7.3.10 - 13 . 900 ° 800° , 70 ° /

13 900 800 70

мя н[.]елнениста 30 -10 -20 теппература, град.

. 5.7.3.11 -

13 . 800°, 900° 5°/

•

удлинение, мни -10 -20 температура, град.

. 5.7.3.12 -

800°,

13 .

900° 10°/

•

удлинные, шки -10 -20 теппература, град

. 5.7.3.13 -

800°,

.

900° 20°/

.

•

13ХФА 900 воздух 800 70 удлинина, щин -10 -20 температура, град.

•

760°,

•

900 ° 5 ° /

.

13ХФА 900 вода 760 5

13 900 760 10

13ХФА 900 вода 760 20 удлинение, мин -10 -20 температура, град.

. 5.7.3.18 -

760°,

13 .

900 ° 20 ° /

. 5.7.3.19 -

180

. 5.7.3.21 -

13

.

•

;

	184		
5.7.3.2			13
			830°
		5.7.3.2.1.	
,			
			754 - 715°,
. 5.7.3.2-5.7.3.5,	5.7.3.2.1.	\mathbf{r}_1	
	,		(30°)
		$70~^\circ$ / .	
$5-40^\circ$ / .			
	(150-110°).		, .
5.7.3.2.6 ,			20 ° /
r ₁ .			(5 ° /)
/00 °			
(70%),	20 ° /		
40 % ,	1 2	. 5.7.3.2.6.	,
	20 - 7		
•	50 0	26	
,			5 40 ° /
	(601	630-615 °)	
		,	7
		(70 ° /)
	r ₃ (280 °)	·

3, . 5.7.3.2.6

500°,

•

•

185

800°

•

,

, . 5.7.3.11-5.7.3.15.

830° γ-, 800°,

,

,

, ;

. 13 ,

), . 5.7.3.2.2 5.7.3.2.4 . 830°

. 770

800

•

5°/

(. 5.7.3.2.1 5.7.3.2.2).

900° (

830°,

770 720 $^\circ$, $$r_1$$

,

800 °

800 °

020	0
830	0

. 5.7.3.10, 5.7.3.15 70° / •

, . 5.7.3.2.2, 5.7.3.2.4 ,

800 ° • , ,

800 ° 830

900 ° , , 900° (355 246 $^{\circ}$ ° /). •

.

13 5.7.3.2.7 800 ° 5 30 • $(10 \quad 70 \circ /).$ 1 5-(50 %)

760-662 °. 30-

(40-70 ° /)

,

,

,

			187			
			2.	1	2	
			,			
,	2		1			
,		2	70 %			:
						α→γ
						u //
			10	70 ° /	5	
			10	/0 /	5-	
						,
						40
· ,			1 3.	,		
	600 °					
				•		
	4					
	30-				1-3	
	,					γ-
	,			600 °		
	·					
						,

•

•

;

,

40-45 %

•

70 ° /

,

13 .

 $\alpha \rightarrow \gamma$

,

•

•

800°

,

,

,

,

•

•

13 760 . 5.7.3.16 - 5.7.3.20 . 5.7.3.2.5.

•

40 %,

•

20 ° /

,

•

•

0

40-70 ° /

 $\gamma \rightarrow \alpha$

,

5

,

,

189 760 800 °

•

γ-

,

,

						0			
• /	, ,	800- 700	700- 600	600- 500	500- 400	400-300	300- 200	200- 100	100- 20
		(900 °			,		{	830 °
5	738	754	601						
10	740	750	601						
20	735	743	630						
40	742	746	615						
70	734	715					280		
	1	Ģ	900 °	1	1	,		5	800 °
5	744	767	661						
10	736	751	644						
20	742	750	636						
40	741	745	634					195	
70	738	738		529			246		
	1	900	0		1	,		1	800 °
5	745	770	629						
10	740	760	625						
20	727	745	646						
40	740	735	644					198	
70	732	720	565			355			
		Ç	900 °			,		,	760 °
5	730	722	640						
10	742	725	643						
20	740	695	612						
40	744	691					212		
70	744	701					220		

830°, 800° 760°

5-70 ° /

13

5.7.3.2.1

. 5.7.3.2.1-

. 5.7.3.2.2 -

13

 900° , 0,5 ., , 800° , 0,5 .

. 5.7.3.2.3 -13

 900° , 0,5 ., , 800° , 5

.

. 5.7.3.2.4 –

 900° , 0,5 ., , 800° , 0,5 .

. 5.7.3.2.5 –

13	900° . 0.5	. 760°	. 0.5	
15	, 0, 5 .,	, 100	, 0,5	•

,

. 5.7.3.2.7

200	0	•
000		•

2.7 –		13	800 °
1 –	800 °	5 .,	10°/;
2 –	800 °	30 .,	10°/;
3 –	800 °	5 .,	70°/;
4 –	800 °	30 .,	70°/;

5.7.3.3

.

,

5.7.3.3.1	13	:
1050 Ê -	;900Ê -	,
	830 Ê	0,5 .
	830 ° α	, 80 %
0,5		

				,	•	5.7.3.3.1.1
			5	10 ° /		
-				(. 5.7.3.3.1.1 ,)).	
	3-5	,				

			20 ° /	/	-	13
		,			_	
(. 5.7.3.3.1.1).					,

- . 40 ° /

(. 5.7.3.3.1.1). - 80%.

,

*"*0. ,

(.5.7.3.3.1.1).

,

10°/

198

. 5.7.3.3.1.2 .

,

0,1-0,15 (.5.7.3.3.1.2).

,

,

(. 5.7.3.3.1.2 -).

,

Fe₃C, . 5.7.3.3.1.2 .

,

20 ° /

.

. 5.7.3.3.1.3

(.5.7.3.3.1.3).

(. 5.7.3.3.1.4).

. 5.9.3.3.1.4

,

,

,

(200),

0,2-0,3 (.5.9.3.3.1.4 , ,).

(.

5.7.3.2 ,

5.7.3.3, 5.7.3.4).

• 70 ° / $_{1} = 715$ ° , $30\ensuremath{\,^\circ}$. 40 ° / (. . 5.7.3.2.1). $\gamma \rightarrow \alpha$ -(•) . (. 5.7.3.3.1.5). . 5.7.3.3.1.5 (. . 5.7.3.3.1.2). (280°), (. 5.7.3.3.1.6, 5.7.3.3.1.7). , • . 5.7.3.3.1.7 ().) (5.7.3.3.1.6 , • • , Fe₃C.

 -5° / , 500; -10° / , 500; -20° / , 500; -40° / , 500 -70° / , 500 5.7.3.3.1.1-13 ,830°,0,5. .

900°, 0,5 .,

- 30000	, 30000; -	, .30000; –	; , , , , - . 5.7.3.3.1.2	,
. 5.7.3.3	3.1.2 –	13	830 °	10 ° /

_	,	30000;		
- - -	,	37000; . 5.7.3.3.1.3	(211), 37000	
. 5.7.3.3.1.3 –		13	830 °	20°/

. 5.7.3.3.1.4 – 13 830 ° 20 ° /

, , –	,	, 20000;
_	;	

. 5.7.3.3.1.5 – 13 830 ° 70 ° /

_	15000;	
-	. 5.9.3.1.6	(101), 20000;
_	. 5.7.3.3.1.6 ;	
_	30000;	

. 5.7.3.3.1.6 –

13

830° 70° /

, 20000; . 5.7.3.3.1.7

, 20000;

. 5.7.3.3.1.7 –

13

830° 70° /

		208			
	5.7.3.3.2	13		:	
1050	Ê -	; 90)0 Ê -	,	
		800 Ê	0,5 .		
		800 °	13		
			•		
		,		800 °	
$\alpha \rightarrow \gamma$,	0,5	
		70 %.		800 °	
			(
)				,	
	. 5.7	7.3.3.2.1,		,	
		5 70 ° /	•	(
5-1	10°/)				
(. 5.7.3.3.2	.1 ,).	,			
				,	
, ,			•		
	,			•	
2	0°/(, 573321)		_	
	0 / (.	5.7.5.5.2.1).	(
5.7.3.3.2.1)			(·	
······································	7	7			

« »,

•

-

-

-

,

•

(. 5.7.3.3.2.2).

,

,

, 20 ° / ,

0,1-0,2 (. 5.7.3.3.2.5),

, . (.5.7.3.3.2.6) « » ,

5.7.3.3.2.6 1,5-2

30

5

α-

, γ-

. 5.7.3.3.2.5).

,

40 ° / (. 5.7.3.3.2.7 - , 5.7.3.3.2.8).

,

(.5.7.3.3.2.7). , (. 5.7.3.3.2.8). , , 20° / , . -(. 5.7.3.2.2) 50- % 40°., $20~^\circ$ / . , , 30 5 • 70 ° / 13 40 ° / . , (.5.7.3.3.2.9 -). • , (.5.7.3.3.2.9). (.5.7.3.3.2.10). , 10-20 %. , 800 ° 5 30 (.5.7.3.2.3 .5.7.3.2.2). 70 ° /) 5 30 (615 ° 529 °. \mathbf{r}_3

= 246 °.

•

211

,

 -5° / , 500; -10° / , 500; -20° / , 500; -40° / , 500; -70° / , 500

. 5.7.3.3.2.1-

13 ,800°,0,5. 900°, 0,5 .,

2558558 $\overline{2}\overline{2}2_{\varphi}$ 100.010. o.3. [001̄]₄ [112]⊕ **110**[¢]

	, 30000; . 5.7.3.3.2.2 , 50000; , 20000; 3.9 ;	, 37000;
. 5.7.3.3.2.2– 800°, 0,5_,	13 10 ° /	900°, 0,5 .,

	;	3000 . 5	0; .7.3.3.2.5		110,	30000;
.5.7.3.3.2.5- 800°, 0,5,		13	20°/	900°	, 0,5 .,	

,	,	_			
-					
_					

.5.7.3.3.2.7-800°, 0,5 .,

13 40 ° /

, 370000;

20000;

300000;

,

,

900°, 0,5 .,

, – - -	;	, 30	000;	1 01,	30000		
. 5.7.3.3.2.8- 800°, 0,5, .,		13	40 ° /		900°	, 0,5	.,

, –		, 30000;		
_ ,	•		α-	110, 30000
572220		12	0	000 05

. 5.7.3.3.2.9– 800°, 0,5 ., 13 70 ° /

900°, 0,5 .,

, 30000;

. 5.7.3.3.2.10-13 800°, 0,5 .,

70 ° /

900°, 0,5 .,

13 5.7.3.3.3 : 1050 Ê -**; 900** Ê -, **800** Ê 0,5 . 800 ° , 900° 900° () (. 5.7.3.2.2 5.7.3.2.4). 13 , (.5.7.2.2). 900 ° , 0,5 ., 13 5 10 ° / 800°, 0,5. (.5.7.3.3.3.1). 5 30 , • 20 ° / . 5.7.3.3.3.1). (, 10° / , (. 5.7.3.3.3.2), (.5.7.3.3.3.2). , , Fe₃C (. 5.7.3.3.3.2). • 40 ° / ,

•

(

«

»

,

. 5.7.3.3.3.1).

•

•

,

40

(

,

,

,

° /)

,

•

 -5° /; -10° /, -20° /, -40° /; -70° /, 500

. 5.7.3.3.3.1 -

13 800°, 0,5. 900°, 0,5 .,

-	,	50000;			
-	;	37000;			
-			112	. 5.7.3.3.3.2 ,	37000.
. 5.7.3.3.3.2 –		13		900°, 0,5 .,	
, 800°, 0,5	•,		10°/		

. 5.7.3.3.3.4 - 13 900°, 0,5 ., , 800°, 0,5 ., 40° /

		228				
5.7.3.3.4		13		:		
1050 Ê -		; 900 ĺ			,	
		760 Ê			0,5	•
					,	
	13	3	760 °		30	
$\alpha \rightarrow \gamma$						•
		,				
,			- 800	830°.		
	4	[90],		760°		
					«	
»,		-				
,	(`		(``
« >	» ()	*	» ()
. « »					·	,
~ "			,			
		30	760°		«	»
			,			
,				,	,	,
			,			
,						,
,						,
, ,					-	,
					(
. 5.7.3.3.4.1 ,).					,

_

(760°)

,

(.5.7.3.3.4.3 ,). ..5.7.3.3.4.2 - α-

,

•

•

760°

,

_

230

(

)

(. 5.7.3.3.4.8).

,

,

,

. 5.7.3.3.4.9 , ,

(. 5.7.3.3.4.10 , ,). 5.7.3.3.4.10),

(

, 5-10 $^\circ$.

,

13

•

-

,

760°

,

α-

,
$$-5^{\circ}$$
 / , -10° / , -20° /

. 5.7.3.3.4.1 - 13 , 760°, 0,5 . : 900°, 0,5 .,

_ _ _ , _	,	50000; . 5.7.3.3.4.2 . 5.7.3.3.4.2 . 37000	, , 50	50000; 0000
. 5.7.3.3.4.2 –	760°, 0,5	13 .,	900°, 0,5 10°/	••,

, , – -	, 20000; . 5.7.3.3.4.4	, 20000
. 5.7.3.3.4.4 – 760°, 0,5, .,	13 20 ° /	900°, 0,5 .,

_		, 20000;	
-		, 30000;	
-		, 30000;	
-		. 5.7.3.3.4.5	$\overline{1}21$, 37000;
-	;		

. 5.7.3.3.4.5 – 13 760°, 0,5 .,

40 ° /

900°, 0,5 .,

- -- ; - ,
 - 1

. 5.7.3.3.4.6 – 760°, 0,5 .,

- , 20000;
- , 30000; . 5.7.3.3.4.6

 $4\overline{2}2,002, 30000;$

,

13 40 ° / 900°, 0,5 .,

_	, 30000;	
-	; . 5.7.3.3.4.7	, 30000;
. 5.7.3.3.4.7 – 760°, 0,5,	13 40 ° /	900°, 0,5 .,

. 5.7.3.3.4.9 – 13 760°, 0,5 ., 70° /

900°, 0,5 .,

- - -	, 37000; . 5.7.3.3.4.10 , 30000;	, 37000;
. 5.7.3.3.4.10 – 760°, 0,5',	13 70 ° /	900°, 0,5.,

	5.7.4	
1		
	, 13 . 900 °	2
	13	
2.	13	
	0,1 ° / , $\alpha {\rightarrow} \gamma$	
3.	,	
	13	
,		
4.		
	830 °, 800 ° 760 (755) °	
	5, 10, 20, 40 70 ° / . , 13	
	830 ° 760 °	
	$(5-10^{\circ} /)$ r_{3}	•
	(40-70 ° /), ,	

5.

13

,

•

5, 10, 20, 40 $\,$ 70 $^\circ$ / .

,

.

•

-

243 800 ° 5 30

(40-70 ° /);

70 ° / . . , $\gamma \rightarrow \alpha$,

α→γ , .

800 °

,

6.

,

.

800 ° 760 °

,

,

,

,

-

,

13

•

•

20 ° /

•

(40 %

760°),

.

•

•

,

13

13

•

6.1.

,

0.1 -

•

			, %							
С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	V
0.16	0.3	0.53	0.012	0.007	0.60	0.05	0.06	0.04	0.007	0.06

1.			: 600°,
	520 °		KCV^{-80} ,
		755 - 860 °	
();			
2.			(580 – 700 °)
	KCV ⁻⁶⁰ ,		
800 °		520°.	
			1050,
900°,	30		
	2		755 , 770 , 800 , 830
860°,	40		
		600 °	70

KCV⁻⁸⁰ HB₃₀₀₀

.

6.1

)

•

Z	4 (. 4.3.1)				,		
					13	,		
							740, 755 °	
		()	,				
						,	,	
	V	/-80						
					,			
		:						

, ,

,

•

;

		217				
)		()		
,	·			V^{-3}	³⁰ .	
,				[56],		600°.
,		500 – 550 °		,	35	
			()		,
13	600 ° –		,			,

520°.

•

,

•

• •

0

	6	500 °	600 + 520
. 6.1	.1, .6.1	1.2	

,

,

•

0

,

. 6.1.2 –

,

 $600^{\circ} (1) \qquad 600 + 520^{\circ} (2) \\ 1050^{\circ}$

,

•

248

, , [95, 96] 0,005-0,08% 0,003-0,008~% . • 600 – 620° [94]. , 520°, 520° (600 $^{\rm o}$.), Т , t,° -[97]: L=T ·(20+lg t). 620° =893 L= 17920. 70 (1.17 .), 520° =793 . 70-400 ., . . 200 560° 12-520 ο

,

() 600 °

600 ° . , 600 ° , 520 °

. [94]. ,

».

~

,

,

~

»

600, 600+520, ,

> 520 ° 620

600 °C

,

,

•

 $600{+}520{+}600\ensuremath{\,^{\circ}}$,

,

,

6.1.1.

251	

6.1.1 –

•

,

,

	3.					
	I-	600°.	II–	520°	III–	600°
, ⁰	HB3000	KCV ⁻⁸⁰	HB3000	KCV ⁻⁸⁰	HB3000	KCV ⁻⁸⁰
800	175	231	160	247	179	229
830	197	216	179	243	197	220
<u></u>	_1	1	•	1	.1	1050°:

600 °,

600 520 °,

•

(800°)

(520°).

. 6.1.3.

,

,

•

13

,

•••

[99],

[98],

0,8%.

,

,

,

[99, 100]

,

,

1%.

,

0,6 %.

VC
			253				
	[101, 102]	0	,02%,				
0,06%	5 V.	,				VC	
							,
				,			
	,			,			
			620°				
				640°			
					(. 6.1.3).
		520 °			× ·		
		0_0	580 °				
						600	620°.
	,					000	645
680 º			,				0+3
000	•						
		,					
						DO	,
	E ₂ C					rų	
	ге-С,					•	
		500.0				,	
		520°					•
	,			,			580°,
		VC	,				
	?			Fe ₃ C			
			,				
		,					
			•				VC,
	,						,
			0				

 $520\ensuremath{\,^\circ}$,

,

.

•

700 °

,

VC

(.6.1.3). , .

580 645 ° 600°

,

.

645°;

VC.

[105].

,

:

,

,

. 6.1.4.

,

, .

,

700 °

,

•

,

.

, , , , ,

645 °

255

520 °

•

.

580, 600 620°.

,

VC

,

,

520 °

,

,

,

645 - 675 °,

V.

•

VC,

 700° ,

1. 13 1050 900°, $600^{\rm o}$, 1 • 2.

520° •

3. ,

,

4. 580 - 700° 645°, 620°

VC. 520°

•

•

 700° , . . 580

VC

Fe₃C

,

•

,

,

,

,	,	V	VC,		
,		645 675°			
		$580 - 620^{\circ}$	675 –		

,

700°

•

6.

700°, , - ,

•

VC

20 2,

20 2

•

. 7.1.

,

202 1050°, 30.

900°,

7

;

,

[103],

•

60-70°. . 7.2 . . 7.3 , 70-80° . . 7.2

[103].

(.7.2),

,

(

•

. 7.1 -900°

20 2 , 500.

, 20000; , 30000; , 30000; , 30000; 900° (-110) 20 2 . 7.2 -:

•

7.1

20 2.

•

263

819°.

 $1\%/^{\circ}$.

. 7.1.1.1 -

20 2.

1

. 7.1.1.2. ₁ 755 °

77°,

(.7.1.1.2).	1 830 °	0,1 ° /
1000 (16);	$\alpha \rightarrow \gamma$	
(. 7.1.1.2),		

. 7.1.1.3

$$\alpha \rightarrow \gamma$$
 20 2

•

:

,

•

5 ° / , . 7.1.2.1,

•

. 7.1.1.3 -

1		
1 -		,
2 -	30	

7.1.2

1

7.1.2.14.

•

[104],

30

,

20 2

(678-588 °)

(562°);

638 r1

521 °

. 7.1.2.2-7.1.2.4.

,

20 2

. 7.1.2.15.

20 2 900 830 5

. 7.1.2.1 -

 830° ,

20 2.

900 ° 5°/

.1.2.3 - 20 2 . 900 ° 830° , 40 ° /

20 2 830 70

. 7.1.2.4 - 20 2 . 900 ° 830° , 70 ° /

•

-10 -20 температура, град

.7.1.2.5 - 20 2 . 900 ° 800° , 5° /

. 7.1.2.7 -

20 2 . 900 ° 800°, 20°/

20XI 25 800 20

20XI 25 800 70

. 7.1.2.10 -

.

20 2 755 5

20 2 755 10

. 7.1.2.11 -

755°,

20 2.

900 ° 10 ° /

удлинение, мкм -10 теккература, град.

20XI 25 755 20

. 7.1.2.13 -

20 2. 900° 755°, 40°/

20 2 755 70

. 7.1.2.14 - 20 2 . 900 ° 755° , 70 ° /

830°

,

•

0,5 .

 \mathbf{r}_1

r₃,

250-300 $^\circ\,$.

 \mathbf{r}_3

230°.

830 °

•

,

675-600 °

•

283°.

0,5 .

 7.2
 20
 2

 7.2.1
 20
 2
 :
 900°

 0,5 ,
 .
 .

 7.2.1
 830°
 .
 .

 (5-20° /)
 .
 .
 .

, . (7.2.1.1 ,).

10-15 %,

;

,

40 /

(. 7.2.1.1).

830 °

,

20 2 : ; $830^{\circ}, 0.5$, , 500: -5° / , -20° / , -40° /

. 7.2.1.1 -900° 0,5 ,

800° 5 10 ° /

,

1-2

(. 7.2.1.2 ,). 5 ° / (. 7.2.1.2)

7.2.1.3

755 °

830°,

. 7.2.1.3 , , , 5, 20 40 ° / ,

,

2-5 .

20°/)

7.2.2	20	2	:	1050 °
0,5 ,		;	900Ê 0,5 ,	

- . (5-10 ° /) (. 7.1.2.1, 7.1.2.2),

.

,

10

,

•

°C/ . 7.2.2.1

•

•

,

4-6

Fe₃C (. 3.35).

•

,

(100)

. 7.2.2.1). (

70 /

540 °,

420 350°, 232 °

(. 7.1.2.4, 7.1.2.15).

. 7.2.2.2, 7.2.2.3

.

0,1-0,3 (.7.2.2.2 ,

, 7.2.2.3 ,), -(7.2.2.3 ,). -, (.7.2.2.2 -).

•

Fe₃C, (.7.2.2.2).

,

,

, –		, ,	20000;		27000.			
- , - 		,	37000,	, 50000;	, 37000;			
. 7.2.2.2 – 0,5 ,	;	20	2	830°	: , 0,5 ,		900° ,	, 70
			0	/				

 $\alpha \rightarrow \gamma$

•

800 °

•

10 ° /

(. 7.2.2.4 ,). (. 7.2.2.4, 7.2.2.5). 7.2.2.5. (7.2.2.5 , 7.2.2.5).

830°.

,

,

•

2-5

•

(.7.2.2.5)

, – -	, 30000; 3.39	<u>1</u> 10, 30000;
-	, 37000; 3.39	103, 37000;
. 7.2.2.5 –	20 2 : ; 800°,0,5,	900°, 0,5

 $10\ensuremath{\,^\circ}$ /

(. 7.1.2.16).

γ-

_		, 30000;		
_	;			
, –			(110) , 30000;	
, –		, 20000;		
. 7.2.2.7 –		20 2	:	900°, 0,5
,	;		800° , 0,5 ,	
		7	'0 ° /	

, ,	, 20000; , 30000;	
. 7.2.2.8 – 900° , 0,5 ,	20 2	: 755 ° , 0,5 ,
10 ° /		

304

. 7.2.2.8

•

(.7.2.2.9 ,).

_		, 30000;			
, -		3	.43		, 30000;
— -		3.43 ;			
-		, 37000;			
-		3.43	3	, 37000;	
. 7.2.2.9 –		20 2	:		900°, 0,5
,	;		$755~^\circ$, 0,5 ,		

10° /

(40 70 ° /)

. 7.1.2.17).

,

(15000)

: α- (),

(.

,

(. 7.2.2.10).

(.7.2.2.10 ,).

(. 7.2.2.10 , 7.2.2.11).

Fe₃C (. 3.44),

_		, 20000;	72211 ·		
, _ _		, 30000; . 7.2.2.11	.,,	, 20000	
. 7.2.2.11 – 0,5 ,	÷	20 2	: 755 ° ,0,5 ,		900°,
		70 °	/		

-

,

,

•

α- (.7.2.2.11).

	7.3	
1.	, 20 2 .	900 °
2.	20 2 0,1 ° / ,	α→γ
3.	, 817-3	823°. , 20 2
4.		
70°/.	830°, 800° 755°	5, 10, 20, 40

5. 20 2

,

-

•

,

•

800-755°

6.

•

•

,

20 2

•

755°

—

,

•

8.1		16	- 13
	12		

[106, 107, 92, 5, 3]

13 16-18 .

13 1317-006.1-

,

593377520-02

,

8

8.1.1

	σ,	σ,	δ ₅ ,	KCV-50,	%
			%	/ 2	
1317-006.1-					
593377520-02	372,4	509,6	23	98	50
(52)	491				

:

,

:

8.1.2

,

	$\sigma_{\mathrm{th}},$	CLR, %	CTR, %	,
				, /
1317-006.1-	75%σ			
593377520-02	(279,3)	3	1	0,5
(52)				
× /				

1317-006.1-593377520-02 (52) 9 2 5639, 5640. 5 ~ ≫. Ø273 16 13 920°, 710° . 840° 0,4-0,6 / • **»** ~ 16 ~ **»** 4, 13 , 830° 760 ° $\mathbf{r}_{\mathbf{3}}$ 3 ~ **»** 20-30%). ([84] -,

3, [107, 108] ,

,

•

16

.

:

840°.

8	1	3
0.	T	.5

σ,	343	475,3	422,8	23,1
σ,	509,6	607,6	548,8	21,5
δ ₅ ,%	25	34	28,5	1,9
КСУ-60 .,	166,6	347,9	280,3	35,8
/ 2				
% .	45	100	91,9	13,4

8.1.1 , ,

8.1.3.

. 8.1.1

1317-006.1-593377520-02 (52).

,

15

2015 .

20 , 273-426 8...14 , « » 14-158-114-99

•

,

Q	2	1		
0	.∠.	T	•	

-

8.2.1

14-158- 114-99	,	,	, %	/	KCV+20, / ²	KCV- 50, / ²	, %
426 814	338,1- 470,4	501,8- 627,2	25	0,80	147	39,2	50
						8	

5639,

318

2

•

,

,

,

0,02-0,05%

319

8.2.1.1.

»

,

1300°, . 450-550°

•

950-1050°.

500 (

. « « » (7-8) , -426 9...14

25-30%

(700-750°

,

•

850-950°).

,

[109]

•

[102]

$$d^2 = SD \ddagger \tag{8.2.2}$$

$$d^2 = S \int \frac{D}{V} dT \tag{8.2.3}$$

,

•

Al, Ti, V, Nb -

,

. 1000° [102] $D_V = 6.81 \cdot 10^{-16}$; $D_{Nb} = 0.11 \cdot 10^{-16}$; $D_{Ti} = 7.53 \cdot 10^{-16}$; $D_{Al} = 6.26 \cdot 10^{-16}$ ²/. 8.2.1

16 20 .

8.2.1.1

•

8.2.1.1

	, %								
14-158-		Mn	Si	S	Р	V	Al	Nb	N
114-99	0,17-	0,50-	0,17-	0,020	0,015	0,02-	0,03-	-	-
	0,22	0,64	0,37			0,05	0,05		
. 51110	0,20	0,64	0,26	0,019	0,012	0,04	0,05	0,02	0,008

8-9

0,01-0,03%.

			40	•		0,02%.
					:	$1280 - 1300^{\circ}$,
		,			(1050-
950°),					700-750°
				,	,	$840-860^{\circ}$,
		780°		690°.		

8.2.2

7-8-6 . - 9-10

•

8.2.2.1,

8.2.2.2.

•

,

. 8.2.2.2

0,02% Nb, 500

5639.

,

. 8.2.2.3

,

0,03% (0,02%Nb)

426 16 :

•

9-10

•

.

8.2.2.1

					KCV+20	KCV-	
11 150 111	,	,	, 0/	/	KC V + 20,	50,	
14-138-114-			%0		/	/ 2	, %
99	338,1-	501,8-	25	0.00	1.477	20.0	50
	470,4	627,2	25	0,80	147	39,2	50
					238,14	228,34	100
					217,56	255,78	100
,	396,9	539	31	0,74	226,38	243,04	100
,	362,6	519,4	32	0,70	254,8	184,24	65
					250,88	247,94	78
					250,88	171,5	65
					227,36	186,2	72
					216,58	190,12	79
,	406,7	539	28	0,75	225,4	184,24	77
	367,5	539	26	0,68	238,14	174,44	78
					218,54	196	91
					230,3	171,5	82

$$lg(\%Nb)(\%C + \frac{12}{14}\%N) = 2.26 - \frac{6770}{T}$$

$$[110]. (\%Nb), (\%C), (\%N) -$$

$$, \% (); T -$$

$$, 20 () - 0,2\% 0,008\%)$$

_

,

,

,

,

1) (1-2) ₃

•

2) 20

,

,

,

•

[84, 107, 108]

[90, 107],

13 20 , 1000° (

13 , [112]

8.3

•

•

,

,

[56-61]

,

),

,

,

 r_3

 r_1

()

.3.1 16 426 32 13 . 8.3.1.1.

,

,

8.3.1.1

•

1	2
	1
	\mathcal{I}

•

							, %			
С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	V
0,17	0,26	0,56	0,005	0,009	0,59	0,13	0,20	0,03	0,008	0,06

5,5

				1:	920°,
	1,5	,	;	830°,	1,5
,				650° , 3 ,	
				2	•
	:	920°,	1,5 ,		2,5-
3,5	(3);			
		,		830°,	1,5 ,

8.3.1

•

, ..

690°, 3. ±10°. -60° V- (KCV-60),

,

,

8.3.2

•

•

. .

• •

,

1 8.3.2.1. 8.3.2.1

13

,

/	,	,	5,	KCV-60,	%
	/ 2	/ 2	%	/ 2	
1	40,5±3	54,6±3,5	30±4	5,1±3,2	32±27,5
2	41,5±4	53,5±3,35	30,8±4	26,5±10	80±20

KCV-60.

•

1,

•

426 32

-

« » (1030-1050°)

[112]

2000 700

,

,

,

8.3.2.2.

,

,

20...-70° .

•

KCV

•

_

,

,

8.3.2.2

	KCV-	%	KCV-	%	KCV-	%	KCV-	%	KCV-	%
/	20,		40,		50,		60,		70,	
	/ 2		/ 2		/ 2		/ 2		/ 2	
2	31,6±0,5	100±0	26,2±0,5	83,3±15	25,6±1,4	81,5±8,3	27,7±5,7	86±14	22,6±2,6	75±5

,

1.

330

2

13

50%;

426 32

. 8.3.2.1

. 8.3.2.1, 8.3.2.2

1

8-9

:

5-6,

10.

•

,

. 8.3.2.3

1 , ,

,

,

•

,

2 – –

,

-

,

[48, 104].

« »

20 2.

-

•	
•	

8		4	L		1	
o	٠		Г	٠	1	

	σ,	σ,	δ ₅ ,	KCV-60,		%		
			%	/ 2		/ 2		
14 150								
14-138-								
121-2005	379	655	14	50	35	50		

60.

,

,

.

KCV-

8.4.1

454 24 20 2

•

24 150 150 .

•

 $920{\pm}10^{\circ}$,

•

(740, 750, 760, 780, 800, 820, 840, 860°) $\pm 10^\circ$,

,

•

600±10°

	335	
V-		KCV-60
9454 (3).
		8.4.1.1.

Q	1		1		1
0	.4	•	T	٠	I

			, %									
		С	Si	Mn	S	Р	Cr	Ni	Cu	Al	N	Nb
20	2	0,18	0,30	1,40	0,005	0,008	0,80	0,10	0,10	0,04	0,008	0,05

8.4.2

. 8.4.2.1

,

1

,

20 2

;

20 2 :	820±30°
$780{\pm}30^\circ$.	
670700° ,	,

•

.

8.4.2.1.

15 3,3%.

,

,

3 2 30 %.

,

8.4.2.1

σ,	537	745	619,9	34,9
σ,	656	820	736,5	27,7
δ ₅ ,%	15,5	31	22,2	2,23
КСУ-60 .,	77	260	157	37,3
/ 2				
KCV-60 .,	35	202	70,9	26,3
/ 2				
%	50	100	80,3	16,1

8.4.2.2 , ,

•

. 8.4.2.2

5 . / .

•

,

 $750\text{-}770^\circ$.

,

[107].

1.				,		
2.	20 ,	13	, 20	2		
3.						
4.			-			
5.					,	

1050°

,

•

-

,

 $900^{\circ} - 770^{\circ}$.

,

3

,

,

•

. .

341

,

,

)

)

)

13

,

•

(1-2)

. 20 , , ,

. 16-18 ,

; 20 2 ,

3

;) 13 .

1. API 5L 44 . 2. . ., . , 7.2005 . .67 3. • •, . // . – 1977. – 7. – . 53-56 4. ••• •, . . . 2002. 624 1983. 1. . 63. 5. . . 6. · ·, • •, • •, . 4. . 13-18. • 7. . .. •••, , 2006. 240 . .: 8. . . , • . 1984 . 9. . . . 1998. . 10. . .

,

•

.

.

1998.

11. . .

, 2007. .7. 2(33).

•••

14.E. Anelli, D. Calleluori, J. C. Gonsales, J. Cumino. Sour service X65 linepipe for offshore special application. Proceedings of the eleventh (2001) international offshore and polar engineering conference.

• •

15.X65 steel for seamless linepipe and risers for on- and offshore projects. www.vmtubes.com

16.	· ·, ·, · ·				
	: , 1970. 368 .				
17.	•••, •••, •••				
	: , 1989. 288 .				
18.					
19.					
20.	,,,,/	•			
	, 1982. 116-121.				
21.					
22.					

•

. 2003.

.

•

23. . .

> , 2005. . .:

24.	• •,		
		//	
		, 1964. 11.	
25.		:	
		, 1990.	
26.		: , 1957.	
27.	,		

. 1970, . 22,

,

. 50, . 99-106.

- 28.Mitsutsuka M.// Tetsu-to-Hagane. 1983. 69 (2), p.268-274.
- 29.Sasaki K., Sugitani Y. // Tetsu-to-Hagane. 1977. vol. 63, p.184.
- 30.Ishiguro M. // Tetsu-to-Hagane. 1974. vol.60, p.464.
- 31.Nozaki T., Matsuno J., Murata K. // Trans. Iron Steel Inst. Jpn. 1978. Vol. 18, p. 330.
- 32.Bolle E., Moreau J.C.// Proc. Int. Conf. On Heat and Mass Transfer in Metallurgical Processes, Dubrovnik Yugoslavia. 1979, p.304.
- 33.Shimada M., Mitsutsuka M. // Tetsu-to-Hagane. 1966. vol.52, p.1643.
- 34.Bolle E., Moreau J.C.// Proc. Of Two Phase Flows and Heat Transfer. III. NATO Advanced Studies Inst.. London. 1976. p.1327.
- 35.Mizikar E.A. Iron Steel Ing., 1970. vol.47, p. 53.
- 36.Hodgson P.D, Browne K.M. Quenching and carburizing.3rd International Seminar// Melbourne. Sept 1991. IFHT. p. 146-159.
- 37.Viscorova R., Sholz R., Spitzer K.-H. Advanced Computational Methods in Heat Transfer// IX Vol. 53 of WIT Transactions on Engineering Sciences. Southampton. S040 7AA. UK. p. 163-172.

38.

.// . 12.1964.

39.

.// . 1976. 12.

40. •• . . // ~ ≫. • . 1969. . . 41.Shimada M., Mitsutsuka M. // Tetsu-to-Hagane. 52 (1966). 1643. 42. . . .// « ≫. , 1969. . . 43. . . •••, 8, 1966. . 46-50. , . 44. 7, 1960. . 655-657. • 45. .: • • . • , 1980, 5. .11. 46. •••, • •, . . • 1, 1983, . 23-24. , 47. • •, 3. .: . , 1983. 48. •••, . 1999. : . . 49. • •, . .. , 1986. 207 . .: • 50. • •, . •• . Al, Si, P, As Ni

, 26, 1968.

•

		. 8, 1962 108-110.
52.	,	
		, 2, 1968.
53.	,	,
	30	

••

51.

55.

54. Li Hong-ying, Li Yang-hua, Wang Xiao-feng, Liu Jiao-jiao, Xiao Pei-lu. Effect of quenching process on mechanical properties and ductile-brittle transition behavior of 28CrMnMoV steel. J. Cent. South Univ. 20: 1456-1461. 2013.

. 1950.

10, 1993.

,

»

,

56. ~ •• 1, 1970. . 5-8. 57.

•

.

. .,

.

4, 1957. . 31-34.

58. •••, ••

5, 1981.

59. • ••

11, 2011.

347

•

•

60.0vri Henry, Kamma Celestine Monde. Evaluation of the transformation mechanisms and mechanical properties of ferrite-martensite microalloyed steels. Materials Research, vol. 11, 1, 2008.

61.	••• •		(+) ,
		10 7.	, 110,
	2, 2010.		
62.			
		2148660.	:
	•		
63.			•
	2112049. :		
64.	•••, •••,		09 2
		, 8, 1994 15-17	
65.			
	, 8, 1989, . 21-24.		
66.	• •		
	.: , 1982. 127 .		
67.	,		
	-	<0	
60	. , 4,200864-6	08.	
08.	•••, •••,	•••,	• •,
	87	1 1999	
69	. , 07,	1, 1777.	
	· ·, · · ·	2.	. 1986 20-22.
70.	•••, •••	•	

		547		
			13	•
	«	-2010».	, 2010 .	
71.				
		. 2012.		
72.	• •,			
		.// , 2,	201182-86.	
73.Talip	Y.Alp, Faisal I.Isk	anderani. Developi	ment of HSLA stee	l for hydrogen
service	e in oil and gas ir	dustries. Proceeding	ngs of the 6 th Sauc	di Engineering
Confe	rence, KFUPM, vo	ol. 5. December, 20	02.	
74.	• •,			
			42	
		.//	, 1,2006	31-35.
75.			:	, 1989.
76.				
	. //	· ·		, 1,
1960.	. 152-156.			
77.	••			2.
.:	, 1966.			
78.			Mathcad e.	
	•	:	, 2000.	
79.			:	, 1954.
80.	• ••	• •		
		. //	, 12, 1977.	. 1130-1132.
81.				
	:	, 1953.		
82.	• •,	• •,		•
	:	, 1975. 488 .		

349

83. • •, •••, • • 05 2 2.// , 11, 1986. . 31-34. 84. • •, . . .// , 4, .110, 2010. . 417-423. 85. • •, •••, . . , 1994. 288 . . .: 86. •••, ••• • • // 4, 1999. . 10-15. , 87. // • •• , 7, .67, 1981. .852-866. 88. .: . . . , 1973.205 . 89. . . • . 1992. . 90. • • •, • •, • • , 7, 2012. .// .744-755. 91.// . . 2. , 1983. . 83-92. . .: 92. ••• . . .// 8, 2010. . 37-41. , 93. . . • , 1963. 311 . .:

94. , 1987. 222 . .: . 95. . . α-Fe // 6, 1984. . 57, . **,.** 1147-1154. 96. . . // -5,1971. . 200, . 1055–1058. . 97.Wan N. Mathematical model for tempering time effect on quenched steel based on Hollomon parameter// J. Mater. Sci. Technol. 6, 2005, Vol. 21. 98. , 1961. . .: . . 192 . 99. . . , 1988. 240 . : 100. : . . , 2003. 307 . : 101. , . . : , 2009. 358 . _ 102. • : ,2003.376 . . . 1. 103. • , 1972. 240 . Totten G.E. Steel heat treatment. Metallurgy and technologies. CRC 104. press. 2007. 832 p. 105. • •, • • 13 , .//

, 2.2013. .13. .103-110.

•••

••

• •

•

•••,

••

106.

.// , 10. 2012. . 113. . 1035-1044. 107. . . • •, .// 39. 2012. . 71-78. , 108. . . · ·, .// , 6.2014. .115. .656-663. 109. •••, . . • •, , 1985. . 83-84. . .: Irvine K.J. et al. Grain refined C-Mn steels. Journal of the Iron and 110. Steel Institute. 1967, 25:2, Feb., p. 161-182.

111. . . • •,

14 . .:

	•		-		
	,	1(1285). 2007.	. 36-38.		
112.					
*			»	, 1973,	. 208.

-

УТВЕРЖДАЮ Начальник отдела производственных технологий-главный технолог ОАО HTTB» В.П. Пашнин рая. 2016 г.

Акт

о внедрении новой технологии термической обработки нефтегазопроводных труб из стали 13ХФА и хладостойких обсадных труб из стали 20ХГ2Б

На индукционных установках цеха №5 внедрена новая технология термической обработки труб из стали марки 13ХФА по ТУ 1317-233-00147016, ТУ1317-006.1-593377520 групп прочности К48-К52. Новая технология включает следующие особенности:

- Для нефтегазопроводных труб с толщиной стенки 11 мм и более из стали 13ХФА проводится двойная закалка, причем первая закалка с температуры выше Ac₃, а вторая от температуры 840±30°С, после закалки из межкритического интервала проводится высокий отпуск;
- Для хладостойких обсадных труб из стали 20ХГ2Б проводится двойная закалка, причем первая закалка с температуры выше Ac₃, а вторая от температуры 780±30°C, после закалки из межкритического интервала проводится высокий отпуск.

Внесены изменения в технологическую инструкцию. При использовании новой технологии стабильно обеспечивается выполнение норм технических условий по механическим свойствам, микроструктуре и коррозионной стойкости.

Экономический эффект от выполнения заказов составил 20 млн руб за 2015 год.

Главный специалист по производству бесшовных труб

К.Э. Бубнов