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ВВЕДЕНИЕ 

Актуальность темы 

Исследования в области визуально-инерциальных навигационных систем 

(ВИНС) способствуют развитию автоматизации в транспортных системах. 

Обработка доступной визуальной информации предоставляет альтернативу 

данным спутниковых навигационных систем (СНС), повышая надежность 

автоматизированных миссий в условиях ограниченного доступа к последним. 

Наиболее распространенный вариант ВИНС объединяет бесплатформенную 

инерциальную навигационную систему (БИНС) с системой технического зрения 

(СТЗ), и требует для функционирования только наличия визуально контрастных 

деталей окружающей среды (визуальных признаков). СТЗ, отслеживая визуальные 

признаки на последовательности изображений с бортовой видеокамеры, получает 

информацию о перемещениях объекта относительно среды. Надежность и точность 

оценок ВИНС повышаются с ростом числа отслеживаемых визуальных признаков. 

На практике это число ограничено производительностью вычислительного 

устройства. Для классических реализаций комплексирующих фильтров характерен 

рост вычислительной сложности по кубическому закону, что делает актуальной 

разработку «быстрых» алгоритмов с различными упрощениями.  

Другое затруднение на пути приложения классической теории фильтрации к 

ВИНС связано с нелинейностью ее модели ошибок, ведущей к неконсистентности 

фильтра при линеаризации уравнений измерений с использованием оценочных 

значений навигационных параметров вместо истинных, которые не известны. 

Предшествующие исследования в ВИНС привели к нескольким архитектурно и 

функционально различным подходам к обработке данных, достоинства и 

недостатки которых проявляются в зависимости от конкретного характера 

движения подвижного объекта, параметров аппаратуры и окружающей среды. При 

этом имеется поле для поиска новых алгоритмов. 

Объектом исследования являются ВИНС. 

Предметом исследования являются модели ВИНС и методы обработки 

(фильтрации) информации ВИНС. 
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Цель исследования заключается в разработке вычислительно-эффективных 

алгоритмов обработки данных ВИНС, основанных на рекуррентной фильтрации с 

использованием консистентных линеаризованных моделей измерения. 

Основными задачами диссертационного исследования являются: 

1. Разработка и верификация алгоритма быстрого блочного фильтра Калмана 

(ББФК), использующего метод главных компонент для экономичной 

аппроксимации корреляционных связей между N визуальными признаками и 

достигающей линейной по N вычислительной сложности.  

2. Разработка консистентных моделей измерений монокулярной ВИНС с 

использованием опорных точек с параметризацией обратной глубины и опорных 

маркеров, сформулированные относительно право-инвариантных ошибок ВИНС. 

3. Реализация визуально-инерциальной навигационной системы для 

применения в прикладной задаче – навигационном обеспечении стенда-

демонстратора ракетного двигателя. 

Научная новизна результатов исследования: 

1. Рекуррентный ББФК, в отличие от известных рекуррентных 

децентрализованных фильтров Калмана, использует аппроксимацию 

корреляционных связей между оценками параметров ВИНС по методу главных 

компонент. Это обеспечивает снижение вычислительной сложности фильтра до 

линейной от числа визуальных признаков при сохранении близости формируемых 

оценок к оценкам обобщенного фильтра Калмана (ОФК).  

2. Новизна предложенных моделей ошибок для монокулярной ВИНС с 

опорными точками с параметризацией обратной глубины и опорными маркерам 

типа Aruco, состоит в том, что они, в отличии от прототипов, сформулированы 

относительно право-инвариантных ошибок, что позволяет устранить ложную 

наблюдаемость ошибок оценивания абсолютных позиционных координат и курса, 

повысить точность оценивания в условиях большой начальной неопределенности 

оценок. 

Теоретическая значимость результатов исследования заключается в разработке 

нового алгоритма обработки данных ВИНС –  ББФК, отличающегося от 
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существующих децентрализованных фильтров Калмана введением аппроксимации 

корреляционных связей оценок по методу главных компонент. Дополнительным 

теоретическим вкладом является разработка консистентных моделей ошибок ВИНС по 

опорным точкам и опорным маркерам, использующих право-инвариантную 

формулировку.  

Практическая значимость результатов исследования заключается в том, что 

применение разработанных алгоритмов в ВИНС позволяет обеспечить коррекцию 

инерциальных оценок на основе визуальных данных. Благодаря линейной от числа 

визуальных признаков вычислительной сложности имеется возможность 

одновременной обработки данных сотен признаков. Преимуществом 

предложенных алгоритмов над оконными, также имеющими линейную сложность, 

является отсутствие ограничений на продолжительность наблюдения признаков, 

что препятствует накоплению ошибок при условии наблюдения одного и того же 

набора признаков.  

Реализация результатов исследования. Разработанные алгоритмы применены 

для решения прикладной задачи оценивания параметров движения стенда-

демонстратора многокамерного ЖРД с центральным телом на этапе посадки.  

Методология и методы диссертационного исследования. Теоретической и 

методологической основой работы являются теория и методы системного анализа, 

рекуррентной фильтрации. 

Положения, выносимые на защиту 

1. ББФК, рекуррентно оценивающий вектор параметров ВИНС с линейной от 

числа визуальных признаков вычислительной сложностью, отличается от 

известных рекуррентных децентрализованных фильтров Калмана применением 

метода главных компонент для аппроксимации корреляционных связей между 

оценками, благодаря чему его оценки сходятся к оценкам ОФК с ростом числа 

удерживаемых главных компонент. Это позволяет путем замены ОФК на ББФК 

сократить время обработки данных ВИНС при числе визуальных признаков 

порядка нескольких сотен без значимого снижения точности. 

2. Предложенные модели ошибок для монокулярной ВИНС с опорными 
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точками с параметризацией обратной глубины и опорными маркерам типа Aruco, в 

отличие от прототипов, сформулированы относительно право-инвариантных 

ошибок, что позволяет устранить эффект ложной наблюдаемости ошибок 

оценивания абсолютных позиционных координат и курса, повысить точность 

оценивания в условиях большой начальной неопределенности оценок. 

Соответствие паспорту специальности. Диссертационная работа 

соответствует паспорту специальности 2.3.1 «Системный анализ, управление и  

обработка информации, статистика» в следующих областях исследования (пунктах 

паспорта специальности): п.3: разработка критериев и моделей описания и оценки 

эффективности решения задач системного анализа, оптимизации, управления, 

принятия решений, обработки информации и искусственного интеллекта;  

п.4: разработка методов и алгоритмов решения задач системного анализа, 

оптимизации, управления, принятия решений, обработки информации и 

искусственного интеллекта; п.5: разработка специального математического и 

алгоритмического обеспечения систем анализа, оптимизации, управления, 

принятия решений, обработки информации и искусственного интеллекта. 

Достоверность результатов работы подтверждена корректным применением 

теоретических методов системного анализа и численного моделирования, 

результатами численного моделирования с применением разработанных 

алгоритмов обработки информации, экспериментальной проверкой предложенных 

алгоритмов обработки информации. 

Апробация результатов. Основные результаты работы были доложены на 

XXXIV конференции памяти выдающегося конструктора гироскопических 

приборов Н.Н. Острякова (1-3 октября 2024 г.,  Санкт-Петербург), на XXVII 

конференции молодых ученых «Навигация и управление движением» (18-21 марта 

2025 г., Санкт-Петербург), на XXXII Санкт-Петербургской международной 

конференции по интегрированным навигационным системам (3-4 июня 2025г., 

Санкт-Петербург). 

Публикации. Основные результаты работы представлены в 4 публикациях, из 

которых 3 входят в список ВАК, получено 2 свидетельства о регистрации программ 
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ЭВМ; получен патент на изобретение. 

Личный вклад автора. Основные положения и результаты работы получены 

автором лично. 

Структура и объем работы. Работа состоит из введения, четырех глав, 

заключения и списка литературы, включающего 95 источников. Общий объем 

работы – 157 страницы. 

Термины и определения 

ВИНС (VINS) – визуально-инерциальная навигационная система (Visual-

Inertial Navigation System). 

Визуальный признак (visual feature) – устойчивый и локализуемый элемент 

наблюдаемой сцены, который ВИНС может обнаружить и отслеживать на 

последовательности изображений с целью оценивания параметров движения 

подвижного объекта. 

СТЗ  – система технического зрения. 

ОФК (EKF) – обобщенный фильтр Калмана (Extended Kalman Filter). 

Обобщение фильтра Калмана для нелинейных систем, использующее  

линеаризацию уравнений динамики и измерений системы. 

MSCKF – Multi-State Constraint Kalman Filter (фильтр Калмана с ограничениями 

на множественные разновременные состояния). Оконный фильтр для ВИНС, 

основанный на исключении векторов состояния визуальных признаков из вектора 

состояния фильтра Калмана и их оценивании оптимизацией по накопленному 

массиву измерений. 

ДФК (DKF)  – Децентрализованный фильтр Калмана (Decentralized Kalman 

Filter). Архитектура фильтра Калмана, предусматривающая этап распределенной 

обработки данных в локальных фильтрах. 

SLAM – Simultaneous Localization and Mapping (совместная навигация и 

построение карты). Задача совместного оценивания положения подвижного 

объекта оснащенного СТЗ (локализация), и положения обнаруживаемых 

визуальных признаков (построение карты). 

Неконсистентность (в ВИНС/SLAM) – возникающая в рамках модели ВИНС 

ложная наблюдаемость ошибок оценивания абсолютных позиционных координат и 
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угла рыскания по данным относительного расположения объекта и визуальных 

признаков.  

Консервативное оценивание (в теории фильтрации) – подход к оцениванию, в 

рамках которого обеспечивается расчет верхней границы для неопределенности 

комплексированной оценки в условиях неточной информации о распределениях 

ошибок используемых данных. 

Посадочная система координат ОhXhYhZh (ПСК) – связанная с Землей система 

координат, определяемая положением посадочного опорного маркера и 

направлением местной вертикали. 

Система координат камеры ОcXcYcZc (СК камеры) – система координат, центр 

которой лежит в оптическом центре камеры, ось ОcZc направлена вдоль оптической 

оси камеры, оси ОcXc и ОcYc сонаправлены с соответствующими осями пиксельной 

сетки изображения камеры, образуя вместе ОcZc с правую тройку осей. 

Связанная система координат ОbXbYbZb  (ССК) – система координат, связанная 

с корпусом подвижного объекта. 

Географический сопровождающий трехгранник Ob ENU (ГСТ, East-North-Up) – 

локальный базис геодезической системы координат , , h в точке местоположения 

центра подвижного объекта Ob: ось Ob E направлена вдоль параллели на Восток; 

ось Ob N направлена вдоль меридиана на Север; ось Ob U направлена вверх по 

нормали к поверхности земного эллипсоида, дополняя систему до правой. 

Инерциальная геоцентрическая стартовая система координат ОXsYsZs 

(СтСК) – система координат, начало которой лежит в центре Земли; а оси 

направлены вдоль соответствующих осей ГСТ в точке старта подвижного объекта 

в момент его старта. 

Perspective-3-point (P3P) – алгоритм решения обратной задачи проективной 

геометрии, определяющий параметры положения и ориентации объекта в СК 

камеры на основе значений координат проекций на плоскость изображения трех 

его точек. 
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Список обозначений 

sx  – вектор параметров БИНС; 

, 1...i i N=x  – векторы параметров N визуальных признаков; 

1, ,...,
T

T T T
v s N

 =
 

x x x x  – вектор параметров ВИНС; 

x̂  – треугольной крышкой обозначены оценки; 

ˆ sx  – оценка вектора параметров БИНС; 

ˆ , 1...i i N=x  – оценки векторов параметров N визуальных признаков; 

ˆs s s= −X x x  – ошибка оценки вектора параметров БИНС (вектор состояния модели 

ошибок БИНС); 

ˆ , 1...i i i i N= − =X x x  – ошибки оценок векторов параметров N визуальных признаков 

(векторы состояния модели ошибок N визуальных признаков); 

X  – прямой крышкой обозначены ошибки апостериорных оценок (оценок после 

этапа коррекции) и параметры их ковариации; 

X  – вогнутой крышкой обозначены ошибки априорных оценок (оценок после 

этапа прогноза) и параметры их ковариации; 

( ) ( ( ))y N O f N=  – нотация «“О” большое». Означает, что при стремлении N к 

бесконечности ( )y N  возрастает не быстрее, чем ( )f N , умноженная на константу. 

( ) ( ( ))y x o f x=  – нотация «“О” малое». Означает, что при стремлении x к нулю ( )y x  

уменьшается быстрее, чем ( )f x . 

k p

f

x




– матрица Якоби вектор-функции 1( ,..., ,..., )k nf x x x  с векторными 

аргументами , 1...jm

jx j n =  для аргумента kx  в окрестности значений 

аргументов, заданных точкой 1 ... nmm
p    ; 

YH  – подпространство в гильбертовом пространстве случайных величин, 

порожденное центрированной гауссовой векторной случайной величиной 

: Ω m→Y .  
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1 ОБЗОР МЕТОДОВ ОБРАБОТКИ ИНФОРМАЦИИ В ВИЗУАЛЬНО-

ИНЕРЦИАЛЬНЫХ НАВИГАЦИОННЫХ СИСТЕМАХ 

 Анализ ВИНС как бортового источника навигационной информации 

1.1.1 Системы координат БИНС 

БИНС воздушных подвижных объектов используют в качестве опорных систем 

координат географический сопровождающий трехгранник либо инерциальные 

системы координат [1]. Взаимную ориентацию земных систем координат а также 

связанной системы координат подвижного объекта (ССК) иллюстрирует рисунок 1. 

 

Рисунок 1 – Земные системы координат и ССК 

Приведем определения для показанных на рисунке 1 систем координат. 

1. Геоцентрическая связанная с Землей экваториальная система координат Оξηζ 

(ГСЗСК) – система координат, начало которой лежит в центре Земли; ось Оξ 

направлена вдоль линии пересечения плоскости нулевого меридиана с плоскостью 

экватора; ось Оζ направлена вдоль вектора угловой вращения Земли, ось Oη 

дополняет систему до правой. 

2. Географический сопровождающий трехгранник Ob ENU (ГСТ, East-North-Up) – 

локальный базис геодезической системы координат , , h в точке местоположения 

центра подвижного объекта Ob: ось Ob E направлена вдоль параллели на Восток; 

ось Ob N направлена вдоль меридиана на Север; ось Ob U направлена вверх по 
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нормали к поверхности земного эллипсоида, дополняя систему до правой. 

3. Инерциальная геоцентрическая экваториальная система координат  

Оξeηeζe (ЭСК) – система координат, начало которой лежит в центре Земли; ось Оξe 

направлена вдоль линии пересечения нулевого меридиана и плоскости экватора в 

некоторый фиксированный момент времени; ось Оζe направлена вдоль вектора 

угловой вращения Земли, ось Oηe дополняет систему до правой.  

4. Инерциальная геоцентрическая стартовая система координат ОXsYsZs (СтСК) – 

система координат, начало которой лежит в центре Земли; а оси направлены вдоль 

соответствующих осей ГСТ в точке старта подвижного объекта в момент его старта. 

5. Связанная система координат ОbXbYbZb  (ССК) – система координат, связанная 

с корпусом подвижного объекта. 

Как видно из рисунка 1, для перехода из инерциальных систем координат в 

связанные с Землей, достаточно  знания угловой скорости вращения Земли и 

текущего времени. 

1.1.2 Корректируемая БИНС 

Рассмотрим корректируемую БИНС на основе акселерометров и датчиков 

угловой скорости (ДУС) [1], [2], использующую в качестве опорной системы 

координат СтСК. На рисунке 2 представлена структурная схема описанной БИНС 

при использовании кватерниона в качестве внутреннего параметра ориентации. 

А

Г

Переход в 

опорную СК

Интегрирование Интегрирование

Расчет матрицы 
перехода

Расчет вектора 
гравитационного 

ускорения

ИнтегрированиеПредварительная 

обработка

Предварительная 

обработка

bω

bn

sv

sbq

Δ gb

Δ ab

1 2sb sb b=q q ω

sbC

sn

sg

Δ sv Δ sr

sr

s s s= +v n g s s=r v

sbq

sv

Δ sbq

n

ω

 

Рисунок 2 – Схема формирования оценок корректируемой БИНС 

Раскроем обозначения на рисунке 2: «А» – трехосевой акселерометр; «Г» – 

трехосевой ДУС; n  – измеренное значение вектора кажущегося ускорения; ω– 

измеренное значение вектора угловой скорости;  sbq  – кватернион перехода из 

СтСК в ССК; sbC  – матрица перехода из СтСК в ССК; sv  – вектор скорости центра 
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ССК, sr  – вектор позиционных координат центра ССК; sg – вектор 

гравитационного ускорения; Δ ,Δa gb b  – поправки на смещения нуля инерциальных 

датчиков, Δ , Δ , Δsb s sq v r  – поправки к инерциальным оценкам параметров 

движения. Поправки вводятся извне корректируемой БИНС.  

На рисунке 1 показано, что измерения ДУС используются для вычисления 

параметров ориентации подвижного объекта в результате интегрирования 

кинематического уравнения Пуассона в кватернионной форме. Определение 

координат центра ССК подвижного объекта sr  производится двукратным 

интегрированием его вектора ускорения в СтСК, восстановленного 

суммированием местного вектора гравитационного ускорения sg  и вектора 

кажущегося ускорения в СтСК sn .  Вектор sn  вычисляется с использованием 

данных акселерометра и параметров ориентации подвижного объекта. Измерения 

акселерометров и ДУС подвергаться предварительной обработке с целью 

приведения измерений к осям ССК, компенсации смещений нуля, улучшения 

частотных характеристик.  

Оценки БИНС корректируются по мере поступления неинерциальных 

измерений, в качестве которых в случае ВИНС выступают измерения СТЗ.  

1.1.3 Коррекция БИНС по измерениям СТЗ в рамках ВИНС 

На рисунке 3 представлена структурная схема ВИНС, включающая в себя 

корректируемую БИНС, СТЗ и блок комплексирования информации, в котором 

производится выработка поправок к оценкам БИНС. 
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Измерения СТЗ
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Инерциальные
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Рисунок 3 – Схема ВИНС 
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Выходные данные СТЗ СТЗz , называемые измерениями СТЗ, представляют 

собой результат обработки изображений [3]. Это параметры, описывающие 

положение и ориентацию проекций визуальных признаков на плоскость 

изображения бортовой видеокамеры в ее пиксельной сетке. Под визуальным 

признаком здесь понимается устойчивый и локализуемый элемент наблюдаемой 

сцены, который конкретная СТЗ может обнаружить и отслеживать на 

последовательности изображений с целью последующего оценивания параметров 

движения подвижного объекта. 

Наиболее простой тип визуальных признаков – контрастные точки сцены, 

называемые опорными точками [3]. Рисунок 4 иллюстрирует отслеживание 

точечного визуального признака и уменьшение неопределенности инерциальных 

оценок положения в моменты наблюдения признака t1, t2. 

 

Рисунок 4 – Коррекция оценок положения подвижного объекта в рамках ВИНС  

за счет отслеживания точечного визуального признака  

В качестве неточечных визуальных признаков, рассматриваемых в источниках, 

встречаются прямые [4], [5], [6], плоскости, [5], [6]. Также известны так 

называемые алгоритмы прямой визуальной одометрии (Direct Visual Odometry), 

использующие непосредственно фрагменты изображений вокруг визуальных 

неоднородностей, трансформируемые от кадра к кадру для вычисления прямой 

фотометрической ошибки [7], [8], [9], [10].  Это позволяет им повысить 

устойчивость работы в условиях бедной текстуры сцены, в частности, использовать 

гладкие градиенты для коррекции [8].   

Кроме перечисленных «естественных» признаков, в ВИНС также могут 

отслеживаться искусственные визуальные метки, предварительно размещенные в 
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окружающем пространстве, такие как опорные маркеры (fiducial markers) [11], [12]. 

С опорными маркерами может быть связана локальная система координат, в 

координатной сетке которой формулируется тот или иной этап автоматических 

операций подвижного объекта. Применение опорных маркеров иллюстрирует 

рисунок 5.  

 

Рисунок 5 –  Применение опорных маркеров в ВИНС 

Можно говорить об абсолютных и относительных измерениях СТЗ: первые 

имеют место,  когда начальные оценки положения отслеживаемых визуальных 

признаков в опорной системе координат независимы от оценок положения 

подвижного объекта; вторые – если начальное оценивание положения признака 

произведено с использованием инерциальных оценок положения подвижного объекта.  

1.1.4 Улучшенные свойства комплексированных оценок ВИНС 

С точки зрения системы управления подвижного объекта комплексированные 

оценки ВИНС предпочтительны оценкам, которые могли бы быть получены ее 

подсистемами, БИНС и СТЗ, по отдельности [3], [13]. Результатом 

комплексирования измерительной информации в рамках ВИНС являются 

следующие эффекты. 

1. Компенсация дрейфа оценок навигационных параметров БИНС. 

Относительные визуальные измерения делают наблюдаемыми такие компоненты 

модели ошибок БИНС, как смещения нулей инерциальных датчиков, ошибки 

оценок вектора линейной скорости, ориентации относительно плоскости 

горизонта. В общем случае это позволяет замедлить дрейф оценок положения 
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подвижного объекта. В частном случае, в условиях обзора одних и тех же 

визуальных признаков может быть достигнуто отсутствие дрейфа. Абсолютные 

визуальные измерения с использованием картографированных опорных точек или 

выставленных опорных маркеров обеспечивают наблюдаемость ошибок оценок 

всех навигационных параметров в посадочной СК. 

2. Улучшение динамических характеристик оценок по сравнению с оценками 

СТЗ. Оценки БИНС характеризуются малым временем запаздывания и высокой 

частотой обновления (сотни герц). Ошибки оценок БИНС имеют характер дрейфа 

и лежат в основном в низкочастотной части спектра. Измерения СТЗ, напротив, 

отличаются относительно большим временем запаздывания (десятые доли 

секунды); широкополосным шумом и отсутствием дрейфа. Чтобы снизить 

дисперсию случайных ошибок оценок параметров ориентации и линейной 

скорости, получаемых лишь по данным СТЗ, до значений, характерных для БИНС, 

потребовалось бы использовать низкочастотную фильтрацию с малой частотой 

среза. Такая фильтрация уменьшает эффективную полосу пропускания оценок и 

увеличивает их временную задержку до значений, неприемлемых с точки зрения 

системы управления подвижного объекта при маневрировании.  В рамках ВИНС 

обозначенные недостатки устраняются за счёт того, что измерения СТЗ 

используются исключительно для формирования низкочастотного контура 

коррекции дрейфа БИНС, при этом сохраняется широкая полоса пропускания 

инерциальных оценок. 

1.1.5 Сценарий автономной посадки с применением ВИНС 

В данном исследовании применение ВИНС рассматривается в рамках сценария 

автономной посадки воздушного подвижного объекта. Выбор ВИНС в качестве 

бортового источника навигационной информации оправдан, так как во время 

посадки существует возможность длительного обзора визуально неоднородной 

сцены – земной поверхности. В рамках сценария предполагается, что подвижный 

объект оборудован ВИНС, а также имеется подготовленная посадочная площадка, 

оснащенная искусственными навигационными визуальными ориентирами [14]. 

ВИНС подвижного объекта включает в себя бесплатформенный инерциальный 

измерительный модуль (БИИМ), навигационное вычислительное устройство и 
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видеокамеру СТЗ, ориентированную в сторону земной поверхности.  

В качестве искусственных визуальных ориентиров посадочной площадки далее 

рассматриваются типа Aruco [11] с точной привязкой в посадочной системе 

координат (рисунок 6). Маркеры этого типа, широко используемые в настоящее 

время, обеспечивают более надежную работу СТЗ по сравнению с рядом  

аналогов [11]. 

 

Рисунок 6 – Подвижный объект и посадочная площадка 

Рассмотрим системы координат, используемые в ВИНС во время посадки. 

1. Посадочная система координат ОhXhYhZh (ПСК) – связанная с Землей система 

координат, определяемая положением посадочного опорного маркера и направлением 

местной вертикали. За начало ПСК принята левая верхняя угловая точка маркера, ось 

ОhZh направлена по местной вертикали, ось ОhXh направлена вдоль горизонтальной 

проекции верхней стороны маркера, ось ОhYh дополняет тройку осей до правой. 

2. Система координат камеры ОcXcYcZc (СК камеры) – система координат, центр 

которой лежит в оптическом центре камеры, ось ОcZc направлена вдоль оптической 

оси камеры, оси ОcXc и ОcYc сонаправлены с соответствующими осями пиксельной 

сетки изображения камеры, образуя вместе ОcZc с правую тройку осей. 

3. ССК подвижного объекта ОbXbYbZb. 

Видеокамера СТЗ 

Навигационный 

вычислитель, БИИМ 

Посадочный 

опорный маркер 

Место посадки 

Ob 

Zb 

Xb 

Yb 

Oc 

Zc 

Xc 

Yc 

Oh 

Xh 

Yh 

Zh 
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Ориентацию ССК относительно ПСК удобно описывать с помощью углов 

Эйлера-Крылова, хотя они и не являются внутренними навигационными 

параметрами ориентации, рассчитываются по соответствующей матрице 

направляющих косинусов.  Используемая в работе последовательность поворотов 

изображена на рисунке 7.  

 

Рисунок 7 – Переход из ПСК в ССК при помощи углов Эйлера-Крылова 

В соответствии с рисунком 7, первый поворот – поворот на угол   вокруг оси 

hOZ  (угол рыскания); второй – на угол  вокруг промежуточной оси bOY   (угол 

тангажа); третий – на угол    вокруг связанной оси bOX  (угол крена).  

С точки зрения ВИНС автономная посадка состоит из двух этапов: (I) навигация 

на удалённом участке траектории и (II) навигация вблизи подготовленной 

посадочной площадки.  

I. Навигация на удаленном участке траектории. Работа ВИНС начинается в 

верхнем диапазоне высот, когда опорный маркер ещё недоступен для наблюдения, 

но становятся различимы естественные визуальные признаки, такие как детали 

рельефа, строений и другие неоднородности сцены. Начиная с этих высот 

существует возможность использования СТЗ для замедления дрейфа оценок БИНС, 

т.е. для сдерживания накопления ошибок сверх имевшихся к началу работы ВИНС. 

Yh 

Zh  

Xh 
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Оценки ВИНС, характеризующиеся ограниченными ошибками, используются для 

наведения на посадочную площадку. В частном случае, если часть естественных 

визуальных признаков была предварительно картографирована, применение 

ВИНС позволяет уменьшить ошибки оценок по сравнению с начальными 

ошибками. Далее в тексте точечные естественные визуальные признаки 

называются опорными точками. 

II. Навигация вблизи подготовленной посадочной площадки. При приближении 

к площадке на достаточное расстояние происходит распознавание искусственного 

визуального признака – опорного маркера. Обнаружение маркера позволяет 

уточнить оценки навигационных параметров подвижного объекта и опорных точек 

в посадочной системе координат, что необходимо для точной посадки. В случае 

выхода опорных маркеров из области видимости СТЗ ВИНС способна сдерживать 

дрейф оценок за счет продолжающегося отслеживания опорных точек. 

Этапы сценария посадки иллюстрируется рисунком 8. Отслеживаемые 

визуальные признаки и область видимости СТЗ показаны в двух положениях, 

относящихся к первому и второму этапу посадки (выделены красным и зеленым 

цветами соответственно). 

 

Рисунок 8 – Этапы сценария автономной посадки с применением ВИНС 

Для выявления задач, возникающих при формировании алгоритма 

I. Маркер не распознан  

    Коррекция по естественным   

    опорным точкам 

II. Маркер распознан    

     Уточнение оценок   

      положения по маркеру   

    для посадки 
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комплексированного оценивания ВИНС, адаптированного под рассмотренный 

сценарий автономной посадки, проведем обзор существующих методов обработки 

информации в ВИНС. 

 Общая характеристика методов обработки информации в ВИНС 

Методы обработки информации в ВИНС направлены на формирование 

комплексированных оценок параметров движения, сохраняющих высокие 

динамические характеристики оценок БИНС при существенном уменьшении их 

дрейфа за счет коррекции по данным СТЗ.  

Задача совместной обработки информации в рамках ВИНС может быть 

сформулирована в виде задачи рекуррентного оценивания параметров модели 

инерциальных датчиков, подвижного объекта и  визуальных признаков, и решена с 

использованием традиционных алгоритмов фильтрации, таких как обобщенный 

фильтр Калмана (ОФК) [15], [16]. На практике в ВИНС с большим числом 

признаков применение традиционных рекуррентных фильтров затруднено в связи 

с ростом их вычислительной сложности как O(N 3) с увеличением числа признаков 

N. Для задач такого типа разработано большое число более быстрых оконных 

алгоритмов, основанных на фильтрации, а также оптимизации [3],  [13], [17], [18] 

включая оптимизацию на фактор-графах [19], [20]. Также представлены 

алгоритмы, использующие оптимизацию по ключевым кадрам [21], [22]. Среди 

оконных алгоритмов, использующих фильтрацию, наибольшее распространение 

получили фильтры типа Multi-State Constraint Kalman Filter (MSCKF) [23], [24], 

[25], [26], [27], [28] со сложностью O(N ), основанные на исключении параметров 

признаков из вектора состояния фильтра Калмана и их оценивании вне фильтра 

оптимизацией по накопленному массиву измерений. В оконных алгоритмах 

реализуется смешанная, частично нерекуррентная обработка измерений, что 

способствует большей адекватности линеаризованных моделей ошибок с 

гауссовой аппроксимацией плотности распределения [29]. Общим недостатком 

таких алгоритмов является ограничение максимального времени отслеживания 

каждого признака длинной временного окна, что не оптимально в условиях, 

допускающих длительный обзор одних и тех же признаков. 
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Для задачи одновременной локализации и картографирования (Simultaneous 

Localization and Mapping, SLAM), родственной визуально-инерциальной 

навигации, разработаны эффективные алгоритмы нерекуррентного оценивания 

множества статичных точек карты и последовательных состояний навигационной 

системы типа Incremental Smoothing and Mapping (iSAM). Для данных алгоритмов 

характерно снижение сложности до O(Nm), где Nm – число точек карты, по 

сравнению с O(Nm 2 ) сложностью реализаций ОФК для SLAM, – при сохранении 

оптимальности [30], [31]. Данные алгоритмы используют естественную 

разреженность совместной информационной матрицы [32], следующую из 

независимости точек карты друг от друга, а также тот факт, что в каждый момент 

времени наблюдается лишь малая часть карты.  

Нерекуррентные алгоритмы типа iSAM не оптимальны для использования в 

ВИНС. В отличие от SLAM, в ВИНС, особенно для подвижных объектов с 

траекторией движения, не образующей петель, нет необходимости 

долговременного хранения данных признаков, вышедших из области видимости. 

Поэтому алгоритмы ВИНС должны быть адаптированы к одновременному 

наблюдению всех визуальных признаков, а не их малой части. В таких условиях 

архитектура iSAM не оправдывается с точки зрения экономии вычислительных 

затрат. Кроме того, было показано, что за счет использования инвариантных 

моделей ошибок, рекуррентные ОФК-алгоритмы достигают примерно той же 

точности, что и iSAM [33]. 

Отметим, что в последнее время возрастает число отечественных 

диссертационных исследований по теме ВИНС/SLAM. Так, в работах [34], [35], 

[36] рассматриваются вопросы адаптивной фильтрации в ВИНС [34], [35], 

применения нейросетевых технологий в ВИНС [35], кооперативного 

распределенного решения задачи SLAM [36]. 

 Методы обработки информации, основанные на фильтрации 

Комплексирующие фильтры широко используются в визуально-инерциальной 

навигации [3], несмотря на то, что при «наивной» реализации они могут быть более 

подвержены погрешности линеаризации и неконсистентности, чем альтернативные 
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подходы, основанные на нелинейной оптимизации [37].  

Для уменьшения погрешности линеаризации в комплексирующих фильтрах 

применяются специализированные математические модели ВИНС: с 

параметризацией обратной глубины [38], [39], [40], [41], с параметризацией в 

связанной системе координат [7], [28], с инвариантными ошибками [27], [33]. 

Также используются алгоритмические средства: отложенная линеаризация [7], 

[25], итеративная релинеаризация [7], [42], [43], [44], [45], сигма-точечный фильтр 

Калмана [46], [47], многочастичный фильтр [48], [49], [50], [51], [52]. 

Неконсистентность в ВИНС представляет собой отдельную проблему, 

возникающую в связи с линеаризацией в условиях неполной наблюдаемости 

вектора состояния. Она состоит в том, что размерность ненаблюдаемой части 

пространства состояния в линеаризованной модели ВИНС, используемой 

фильтром, оказывается меньшей четырех, – размерности, характерной для 

исходной нелинейной модели. Так, в рамках исходной модели ненаблюдаемы 

компоненты вектора параллельного переноса всех видимых признаков и 

подвижного объекта; угол поворота радиус-векторов векторов всех видимых 

признаков и подвижного объекта вокруг вектора гравитационного ускорения [27]. 

Основной причиной возникновения неконсистентности является использование 

рекуррентно уточняемых оценок при вычислении матриц Якоби линеаризованной 

модели, что приводит к рассогласованности конфигурации ненаблюдаемого 

подпространства на каждом шаге фильтра. Этот эффект позволяет фильтру 

ошибочно «уточнять» оценки ненаблюдаемых состояний, что ведет к резкому 

росту погрешности, если дисперсия этих состояний была значительной [53]. 

Дополнительной причиной неконсистентности может служить аппроксимация 

модели ошибок ВИНС, применяемая для снижения вычислительной сложности. 

Для борьбы с неконсистентностью применяются следующие методы: 

вычисление матриц Якоби только по первым оценкам (First Estimation Jacobians, 

FEJ) [53], [25], внедрение ограничений наблюдаемости (Observability Constrains, 

OC) [53], [54], применение моделей с инвариантными  ошибками [27], 

параметризация в связанной системе координат [7], [28].  
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Рассмотрим упомянутые методы уменьшения погрешности линеаризации и 

обеспечения консистентности. 

1.3.1 Методы уменьшения погрешности линеаризации и обеспечения 

консистентности 

1.3.1.1 Параметризация обратной глубины 

Для того, чтобы определить декартовые координаты опорной точки в 

трехмерном пространстве используя монокулярную камеру, требуются несколько 

наблюдений точки из разных положений. Параметризация обратной глубины 

(inverse depth parametrization) [38], [39], [40], [41] призвана обеспечить включение 

опорной точки в ВИНС сразу после первого наблюдения. В качестве параметров 

опорной точки используются координаты оптического центра камеры в момент 

первого наблюдения точки, азимут и возвышение луча зрения, под которым 

обнаружена точка, а также обратная величина расстояния до точки вдоль луча 

зрения  = 1 / r, называемая обратной глубиной. Преимущество использования 

обратной глубины состоит в том, что неопределенность ее значения легче 

аппроксимировать гауссовой случайной величиной с заданной дисперсией, как это 

требуется в рамках фильтра Калмана [38]. Так, бесконечный полуинтервал 

значений расстояния  )1,r  +  соответствует конечному полуинтервалу значений 

обратной глубины ( 0,1ρ . Основным недостатком параметризации обратной 

глубины по сравнению со стандартной параметризацией декартовыми 

координатами является большее число параметров (6 параметров вместо 3), что 

делает предпочтительным конверсию параметров обратной глубины в декартовые 

координаты как только неопределенность параметра   уменьшится до заданного 

порогового значения. 

1.3.1.2 Параметризация в связанной системе координат 

Параметризация в связанной системе координат (robocentric parametrization) 

предполагает оценивание положения визуальных признаков относительно 

подвижного объекта, – без привязки в опорной системе координат,   
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и  рассматривается как средство уменьшения ошибок линеаризации в  

ВИНС [7], [28]. Так, в работе [7] продемонстрировано, что использование 

параметризации обратной глубины в связанной системе координат позволяет 

достичь линейности модели измерений. Другим достоинством параметризации в 

связанной системе координат является то, что она гарантирует консистентность. 

 Поскольку связанная система координат перемещается вместе с объектом, 

параметры положения признаков требуют постоянного перерасчета, что приводит 

к дополнительным вычислениям, в частности, за счет усложнения модели 

динамики ВИНС. Основным недостатком при использовании данной 

параметризации является неизбежность дрейфа оценок положения и угла рыскания 

даже в условиях наблюдения одного и того же набора признаков. 

1.3.1.3 Метод отложенной линеаризации 

Метод отложенной линеаризации [23], [25] основан на применении в качестве 

точки линеаризации оценки положения признака, построенной после накопления 

достаточного объёма измерительной информации. Такая стратегия позволяет 

применить в качестве точки линеаризации оценку с меньшей неопределённостью, 

что снижает погрешность линеаризации по сравнению с традиционным подходом, 

когда в качестве точек линеаризации используются рекуррентно вычисляемые 

оценки. Основным недостатком метода отложенной линеаризации является 

временная задержка, обусловленная необходимостью накопления измерительной 

информации.  

1.3.1.4 Сигма-точечный фильтр Калмана 

В отличие от ОФК, аппроксимирующего модель измерительной системы 

линейными функциями, сигма-точечный фильтр Калмана (СТФК) использует 

аппроксимацию гауссовского распределения оценок дискретным набором 

выборочных точек, называемых сигма-точками. Набор сигма-точек выбирается 

таким образом, чтобы сохранить исходное среднее значение и корреляционные 

связи. Набор сигма-точек «пропускается» через нелинейные функции, и 

полученные преобразованные точки используются для оценки апостериорного 

распределения [46], [47]. В отличии от ОФК, СТФК позволяет учитывать 
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несимметричность распределений случайных величин, возникающую при 

распространении через нелинейную функцию. Недостатком СТФК являются 

большие, чем у ОФК, затраты на вычисления.  

1.3.1.5 Многочастичный фильтр 

Многочастичные фильтры (МЧФ) – семейство алгоритмов последовательного 

метода Монте-Карло, применяемые для оценки состояния существенно 

нелинейных динамических систем [33]. МЧФ представляют апостериорную 

плотность выборками частиц с соответствующими весами, обновляемыми 

рекуррентно по мере поступления новых измерений. МЧФ позволяет производить 

оценивание в условиях существенно нелинейной системы и не унимодальных 

распределений [33], но ценой существенно больших, чем у ОФК, вычислительных 

затрат [48], [49], [51]. 

1.3.1.6 Метод вычисления матриц Якоби по первым оценкам 

Метод FEJ, используемый для обеспечения консистентности, заключается в 

линеаризации уравнений динамики и измерений ВИНС в окрестности только 

априорных оценок вектора состояния БИНС на предыдущем шаге, и одной и той 

же оценки положения признака, обычно первой [53]. Не смотря на то, что FEJ  

гарантирует консистентность, использование только первой оценки положения 

признака как точки линеаризации уравнений измерений увеличивает погрешность 

линеаризации. 

1.3.1.7 Методы ограничения наблюдаемости 

Методы ограничения наблюдаемости используются для обеспечения 

консистентности. В работе [53] для системы чисто визуальной одометрии на 

плоскости была рассмотрена и решена задача условной минимизации расхождения 

между текущими оценками и допустимыми точками линеаризации, причем 

получен замкнутый алгоритм вычисления. Аналогичный [53] метод для ВИНС не 

описан. В работе [25] для ВИНС представлен метод ограничения наблюдаемости, 

основанный на непосредственной модификации матриц Якоби, без поиска 
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оптимальных точек линеаризации. Метод, представленный в [25] адаптирован под 

оконные фильтры типа MSCKF, где все измерения признака обрабатываются 

единовременно и отдельно от измерений остальных признаков. Методы 

ограничения наблюдаемости [53], [25]  применимы только при параметризации 

точечных признаков тройкой декартовых координат. 

1.3.1.8 Модели с инвариантными ошибками 

Коэффициенты усиления по невязкам, используемые в ОФК для выработки 

поправок, зависят от текущей оценки вектора состояния. Это ухудшает 

устойчивость ОФК и ограничивает область его применения условием малости 

ошибок оценок. Исключение составляют линейные системы: в них коэффициенты 

усиления фильтра Калмана обладают свойством инвариантности к оценкам 

состояния, поэтому процесс оценивания сходится при произвольно больших 

начальных ошибках. Применение моделей с инвариантными ошибками, 

основанных на  теории групп Ли, позволяет отчасти воспроизвести данное свойство  

для навигационных систем [27] , [33], [55], [56], [57], [58], [59], [60]. При этом 

улучшение характеристик оценок фильтра обусловлено тем, что множество всех 

возможных перемещений и поворотов подвижного объекта образует именно 

группу Ли, а не векторное пространство. При использовании инвариантной модели 

ошибок в ОФК консистентность с нелинейной моделью ВИНС достигается  

естественным образом, без необходимости модифицировать матрицы Якоби, как 

показано в работе [27]. При этом в [27] рассматривается ВИНС с параметризацией 

признаков декартовыми координатами, и не рассмотрены вопросы введения 

инвариантных ошибок в модель с параметризацией обратной глубины. 

1.3.2 Методы снижения вычислительной сложности фильтра 

1.3.2.1 Комплексирующие фильтры с исключением векторов состояния 

визуальных признаков 

Данные фильтры формируют оценки расположения неподвижных визуальных 

признаков нерекуррентно, по полной последовательности их наблюдений, с 

использованием таких методов, как нелинейный метод наименьших квадратов. 
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Далее производится исключение оценок расположения признаков из уравнений 

измерений фильтра. Ряд последовательных наблюдений одного и того же 

визуального признака объединяется в общее уравнение измерений, производится 

линеаризация, после чего линеаризованное уравнение проецируется на левое 

нулевое пространство матрицы измерений вектора ошибок расположения 

визуального признака.  

В результате в преобразованное уравнение измерений входят лишь векторы 

ошибок оценок положения и ориентации навигационной системы в 

последовательные моменты времени [24], [3], [23] (рисунок 9). Векторы состояния 

ошибок расположения признаков не включаются в вектор состояния фильтра 

Калмана и им не оцениваются. 

 

Рисунок 9 – Исключение параметров визуальных признаков в уравнениях 

измерений MSCKF 

Можно отметить следующие особенности оригинального алгоритма MSCKF [24]: 

• оценки положения признаков не входят в вектор состояния ВИНС; 

• вектор состояния ВИНС расширяется векторами состояния оценок положения 

и ориентации камеры в предыдущие моменты времени. В оригинальном 

варианте – расширение на 192 элемента.  

• коррекция оценок вектора состояния ВИНС производится однократно по 

всему массиву измерений, связанных с визуальным признаком. 

• высокое быстродействие алгоритма – свыше 10 Гц при N = 800. 

Среди недостатков MSCKF можно назвать то, что он является оконным 

фильтром и поэтому накладывает жесткие ограничения на время отслеживания 

каждого признака. Это делает неизбежным  дрейф оценок координат и угла 
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Траектория 
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рыскания даже при наличии в поле зрения одного и того же набора признаков. 

С использованием MSCKF было создано несколько открытых библиотек для 

визуально-инерциальной навигации роботов (OpenVINS, MSCKF_VIO), имеется 

большое число модификаций, продолжается публикационная активность [61]. 

1.3.2.2 Децентрализованные фильтры Калмана 

Другой способ снижения вычислительной сложности фильтра заключается в 

введении этапа децентрализованной обработки измерений (Decentralized Kalman 

Filters) внутри локальных фильтров [62], [63], [64], [65], [66], [67]. В федеративных 

фильтрах Калмана (Federated Kalman Filters) помимо локальных фильтров 

предусмотрен мастер-фильтр, осуществляющий следующий этап обработки 

информации – на основе локальных оценок состояния и матриц ковариаций 

строятся глобальные [62], [67]. 

Различные алгоритмы децентрализованных фильтров известны и для фильтра 

Калмана, и для фильтра частиц [68]. Они изучались как способ понижения 

вычислительной сложности до квадратичной, способ параллелизации вычислений 

[67], а также как способ организации обработки данных мультисенсорных сетей 

[62], [63], [64], [65], [66]. Данные алгоритмы позволяют «развязать» уравнения, 

связанные с каждым из датчиков, рассматриваемых  как узлов сети, сведя к 

минимуму обмен данными и вычислительную нагрузку на мастер-фильтр (при его 

наличии). 

В рамках ДФК вектор состояния каждого локального фильтра разделен на 

общую часть, относящуюся к измеряемому сетью динамическому процессу, и 

собственную часть, уникальную для этого узла, например, смещение нуля датчика 

[62]. Также описаны ДФК сниженного порядка [66] требующие, чтобы с каждым 

узлом был связан свои состояния, непересекающиеся с состояниями других узлов. 

В связи с наличием динамического шума у измеряемого процесса, оценки 

рекуррентного децентрализованного фильтра субоптимальны [62], [69]. Оценки 

фильтра можно приблизить к оптимальным за счет расширения общей части 

вектора состояния, включая в него последовательные состояния измеряемого 

процесса. Для достижения консервативности фильтра, т.е. для предотвращения 
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недооценки  неопределенности, в децентрализованных фильтрах применяется 

техника завышения расчетных матриц ковариаций (Covariance Inflation) [62].  

Существующие алгоритмы децентрализованных фильтров Калмана плохо 

подходят для использования в ВИНС, поскольку не адаптированы под условия, в 

которых: 

• каждый измеритель имеет малую, по сравнению с общей, собственную часть 

вектора состояний; 

• отсутствуют ограничения на передачу данных, так как вычисления не 

распределенные, а централизованные в рамках одного вычислителя. 

 Методы адаптивного оценивания неопределенности измерений СТЗ 

СКО измерений СТЗ непостоянно в зависимости от условий освещения и 

взаимного расположения видеокамеры и визуального признака. Для использования 

измерений СТЗ в ВИНС желательно иметь способ оценивания текущих значений 

СКО на основе анализа распределения яркости пикселей в окрестности проекций 

признаков на изображение [70], [71]. 

В качестве примера, поясняющего этот подход, рассмотрим модель [72] для 

расчета СКО координат угловых точек, подходящую для случая опорных маркеров: 

( )3
1 2

Δ

I
u L

α σ
σ α α s

I
= +  , (1) 

где uσ  – СКО координат угловых точек; 

Iσ  – оценка СКО белого гауссовского шума яркости пикселей в окрестности 

угловой точки; 

ΔI  – разность выборочных средних яркости темных и светлых пикселей в 

окрестности угловой точки; 

Ls  – оценка параметра s  гауссового фильтра, дающего эквивалентное  

размытие изображения; 

1α , 2α , 3α  – параметры модели, зависящие от свойств видеокамеры и 

определяемые на этапе калибровки. 

Параметры Iσ  и ΔI  определяются по гистограмме распределения яркости 
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пикселей в окрестности угловой точки. Гистограмма аппроксимируется 

гауссовыми функциями распределения (рисунок 10, [72]) 

 

 

Рисунок 10 – Анализ распределения яркости пикселей в окрестности  

угловой точки 

Рассмотренный пример иллюстрирует общий подход: производится расчет 

параметров, характеризующих размытие и зашумленность изображения, затем по 

определенной эмпирической формуле вычисляются расчетные значения СКО. 

 Методы визуально-инерциальной навигации на этапе посадки 

Вариант ВИНС, разрабатываемый в рамках исследования, рассчитан на 

применение в составе системы управления демонстратора воздушного подвижного 

объекта с ЖРД на этапе посадки. В данном пункте рассматривается схожий 

сценарий применения ВИНС [73]. 

1.5.1 Визуально-инерциальная навигационная система для воздушного аппарата с 

вертикальной посадкой VISINAV 

Рассмотрим визуально-инерциальную навигационную систему VISINAV [73], 

предназначенную для обеспечения посадки спускаемого космического аппарата на 

поверхность планеты.  

Алгоритмы технического зрения, применяемые в VISINAV, извлекают два типа 

признаков из изображений с бортовой видеокамеры:  

1) картографированные ориентиры (mapped landmarks, ML), т.е. признаки, 
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глобальные координаты которых могут быть получены из карты района посадки 

(совмещённых данных спутникового изображения и цифровой модели рельефа);  

2) ситуативные признаки (opportunistic features, OF), т.е. признаки, которые 

могут быть надежно обнаружены в последовательностях изображений, но не 

нанесенные на карту, в следствие чего их положение в трехмерном пространстве 

оценивается в ходе полета. 

Алгоритм комплексирования данных в ВИНС реализован на основе ОФК. Во 

избежание роста вычислительной сложности, погрешности позиционирования 

ситуативных признаков не включаются в вектор состояния модели погрешности, 

используемой ОФК, а исключаются из уравнений измерений в соответствии с 

алгоритмом MSCKF. Схема VISINAV представлена на рис. 11. 

 

Рисунок 11 – Схема VISINAV 

Экспериментальная проверка системы VISINAV производилась в ходе Sounding 

Rocket Experiment 41.068 в ходе пуска ракеты, достигшей высоты 124 км и 

совершившей посадку на парашюте.  Рисунок 12 иллюстрирует состав 

испытательного оборудования.  

Ошибки оценивания скорости и позиционных координат в момент касания 

поверхности составили 0.16 м/с и 6.4 м соответственно, что было признано 

удовлетворяющим требованиям посадочных миссий. 
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Рисунок 12 – Испытание VISINAV в ходе Sounding Rocket Experiment 

На рисунке 13 показаны оценки траектории движения ракеты по данным СНС,  

БИНС и ВИНС, наложенные на цифровую карту рельефа. 

  

а) б) 

Рисунок 13 – Оценки траектории в ходе Sounding Rocket Experiment: 

а) общий вид; б) на конечном участке 

В VISINAV для обработки измерительной информации ситуативных признаков 

используется MSCKF, поэтому ей присущи недостатки, связанные с 

фиксированной длиной временного окна фильтра.  

Сценарий посадки демонстратора  воздушного объекта с ЖРД отличается от 

сценария использования VISINAV тем, что в эксперименте с демонстратором 

моделируется посадка на заранее подготовленную площадку, где возможно 

достичь большей точности за счет размещения искусственных визуальных 

ориентиров. 

 Выводы по обзору 

В обзоре проанализированы следующие ключевые проблемы, возникающие при 

совместной обработке данных СТЗ и БИНС в рамках ВИНС. 

1. Ограниченность ресурсов бортового вычислителя в условиях большого 
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объема измерительной информации. Ограниченность вычислительных ресурсов 

вынуждает искать компромисс между числом отслеживаемых визуальных 

признаков и частотой работы системы, так как снижение каждого из этих 

параметров способно привести к ухудшению точности и надежности 

навигационных оценок. Обзор источников показал, что оконные алгоритмы ВИНС 

с линейной от числа признаков вычислительной сложностью получили большее 

распространение, чем традиционные алгоритмы, осуществляющие рекуррентное 

оценивание полного вектора состояния ВИНС с помощью ОФК. При этом наиболее 

часто в ВИНС используются фильтры на основе MSCKF [23], исключающие 

векторы состояния признаков из модели измерений и формулирующие задачу 

оценивания последовательных состояний БИНС в пределах временного окна 

заданной длины. Хотя оконная обработка данных в MSCKF позволяет существенно 

уменьшить время вычислений по сравнению с полностью рекуррентными 

фильтрами на базе ОФК, ширина окна ограничивает максимальную длительность 

отслеживания каждого признака. Потенциальная выгода от снятия данного 

ограничения зависит от характера движения подвижного объекта. При движении 

на большой высоте ожидаемая длительность обзора признаков, расположенных на 

земной поверхности, существенно превышает ширину окна типичных реализаций 

MSCKF, составляющую порядка 1-3 секунд. В таких условиях оценки MSCKF не 

оптимальны, поэтому для ВИНС воздушного объекта предпочтительно 

разработать полностью рекуррентный комплексирующий фильтр с линейной 

вычислительной сложностью, не использующий оконную архитектуру. 

2. Нелинейность моделей ВИНС. Модели динамики оценок и измерений 

ВИНС нелинейны, что затрудняет описание закона распределения ошибок ВИНС.  

Точность алгоритмов оценивания, основанных на линеаризации моделей ВИНС и 

гауссовской аппроксимации распределений ошибок, может быть повышена за счет 

(а) использования специализированной параметризации расположения признаков, 

такой как параметризация обратной глубины [38]; (б) за счет отложенной 

линеаризации с использованием оценок, полученных по накопленному массиву 

измерений СТЗ, для которых распределение приближено к гауссовскому [23]; (в) 

при помощи итеративной релинеаризации [42]. Для ВИНС с монокулярными 

видеокамерами нелинейность измерительной задачи особенно существенна для 
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новых признаков, наблюдаемых с малым параллаксом. В рамках оконных 

фильтров, таких как MSCKF, отложенная линеаризация является основным 

методом снижения погрешности линеаризации [23]. При полностью рекуррентном 

оценивании вместо нее целесообразно воспользоваться параметризацией 

признаков обратной глубины, а также итеративной релинеаризацией как 

вспомогательным методом. 

Применение линеаризованных моделей в рекуррентных ВИНС может 

привести к потере консистентности с исходной нелинейной моделью, что 

проявляется в ошибочном «оценивании» параметров ненаблюдаемых компонент 

пространства состояния. Для предотвращения неконсистентности в рекуррентных 

ВИНС используются методы ограничения наблюдаемости [25], а также 

инвариантные модели ошибок [27]. При этом применение инвариантных моделей 

ошибок представляется более современным и естественным подходом, чем 

ограничение наблюдаемости [27]. Поэтому разрабатываемые модели ВИНС будем 

формулировать относительно инвариантных ошибок. 

3. Параметрическая неопределенность модели случайных ошибок 

измерений СТЗ. В классической постановке задачи фильтрации все параметры 

модели ошибок рассматриваются как априорно известные, но на практике 

определение параметров случайных ошибок СТЗ затруднено их 

нестационарностью, в частности, зависимостью от условий освещения, величины 

контраста визуального признака на фоне сцены. В рамках данного исследования 

предполагается, что в СТЗ реализована адаптивная модель случайных ошибок 

измерений, аналогичная представленной в [72], и расчетные значения СКО шума 

измерений СТЗ предаются в комплексирующий фильтр ВИНС. Наличие 

достоверной информации о СКО входного шума необходимо для достижения 

соответствия моделей ошибок ВИНС реальным условиям оценивания. 

Сформулируем цель исследования, вытекающую из анализа проблем 

алгоритмов обработки информации ВИНС. 

Целью данного исследования является разработка вычислительно-

эффективных методов обработки данных ВИНС, основанных на рекуррентной 

фильтрации и использующих консистентные модели ВИНС.  

Разрабатываемый рекуррентный комплексирующий фильтр должен оценивать 
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полный вектор состояния ВИНС с быстродействием, сравнимым с MSCKF, но без 

использования оконной обработки данных. В отличие от MSCKF, фильтр должен 

обеспечивать: 

1. Возможность запуска коррекции оценок параметров движения по 

измерениям признака сразу после его обнаружения. 

2. Возможность отслеживания признаков в течении произвольного времени. 

3. Отсутствие дрейфа оценок параметров движения при условии наблюдения 

одного и того же набора признаков. 

Используя терминологию из работы [73], описывающей MSCKF-ВИНС для 

космического спускаемого аппарата, для применения ВИНС в системе управления 

воздушного подвижного объекта на этапе посадки необходимо отслеживание двух 

типов признаков: 

• «объектов-ориентиров» из каталога, обеспечивающих привязку / начальную 

выставку подвижного объекта в посадочной системе координат; 

• «ситуативных» визуальных признаков, выделяемых непосредственно во 

время полета. 

В качестве объектов-ориентиров будут использоваться опорные маркеры; в 

качестве ситуативных признаков – опорные точки. Последние рассматриваются в 

качестве дополнительного источника информации, критически важного на 

начальном и конечном участках посадочной траектории, когда объекты-ориентиры 

обычно не попадают в область видимости видеокамеры СТЗ. 

Таким образом, в рамках исследования необходимо решить следующие задачи: 

1. Разработать субоптимальный рекуррентный комплексирующий фильтр для 

ВИНС, аппроксимирующий ОФК с линейной сложностью. 

2. Разработать консистентные модели ВИНС с инвариантными ошибками для 

точечного визуального признака с параметризацией обратной глубины, а так же для 

опорного маркера. 

3. Разработать модель ошибок начальной выставки ВИНС по опорному 

маркеру; 

4. Разработать программно-аппаратную реализацию ВИНС для тестирования и 

применения в составе системы управления подвижного объекта. 
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2 БЫСТРЫЙ БЛОЧНЫЙ ФИЛЬТР КАЛМАНА ДЛЯ ВИЗУАЛЬНО-

ИНЕРЦИАЛЬНЫХ НАВИГАЦИОННЫХ СИСТЕМ 

Данный раздел посвящен разработке и верификации алгоритма быстрого 

блочного фильтра Калмана (ББФК) для ВИНС, представляющего собой 

рекуррентный алгоритм оценивания вектора параметров ВИНС с линейной 

вычислительной сложностью от числа визуальных признаков [74], [75]. В отличие 

от известных рекуррентных децентрализованных фильтров Калмана, ББФК 

использует аппроксимацию корреляционных связей между оценками параметров 

ВИНС по методу главных компонент, что обеспечивает сохранение близости 

формируемых оценок к оценкам обобщенного фильтра Калмана (ОФК).  

В пункте 2.1 приведена постановка задачи оценивания в ВИНС, в п. 2.2 описаны 

модели динамики и измерений, используемые фильтром, в пунктах 2.3 - 2.5 

— описание фильтра и обоснование алгоритма вычислений, в пункте 2.6 — 

алгоритм вычислений фильтра. Пункт 2.7 содержит сравнительный анализ ББФК и 

ОФК по формируемым оценкам и времени вычисления в условиях численного 

моделирования. 

 Постановка задачи оценивания в ВИНС 

Рассмотрим типичную [3], [27], [54] ВИНС с отслеживанием на кадрах с 

бортовой видеокамеры проекций N контрастных точек окружающей среды (т.н. 

опорные точки).  

Используя измерения инерциальных датчиков и СТЗ, требуется оценить 

параметры БИНС sx  и параметры опорных точек ix : 

16 1 4 1 3 1 3 1 3 1 3 1 3 1 3 1 1.., , 1... , ,
T T

T T T T T i T T

s hb h h gyr acc i h s Ni N       
   = = = =   q r v b b rx x x x x , (2) 

где hbq  – кватернион перехода из опорной СК в ССК;  

hr  , hv – векторы положения и скорости подвижного объекта в опорной СК;  

gyrb , accb  – смещения нуля ДУС и акселерометра соответственно;  

i
hr  – вектор положения i-той опорной точки;  

x  – полный вектор параметров ВИНС. 
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Модели измерений трехосевых ДУС 
gyrω  и акселерометра 

accn : 

( )3 1 3 1,T T

gyr hb h gyr ω acc hb h h acc n = − + = − − +ω C ω b ν n C a g b ν ,  (3) 

где ( )hb hbC=C q  – матрица перехода из опорной СК в ССК;  

hω , 
ha  , 

hg  – векторы угловой скорости, линейного ускорения и 

гравитационного ускорения в опорной СК соответственно;  

ων , 
nν  – белые гауссовы шумы измерений. 

Измерения СТЗ представляют собой однородные координаты iq  проекции i-той 

опорной точки на плоскость изображения видеокамеры (рисунок 14), чему 

соответствует следующая нелинейная модель измерений: 

( )( ) ( ) ( )2 1 ( , , ) : , , . (.)CV CV T i CV T c
i s i i c hb h h i c bc bh π π π = = − + = −q C r r C dx x ν ν  (4) 

где 
CV
iν  – дискретный белый шум измерений; 

 – матрица перехода из ССК в СК камеры;  

c
bd –  вектор положения центра СК камеры в ССК; 

1 2 3( ) ,
T

c c c cπ  =  l l l l – функция проецирования вектора cl  на плоскость zc = 1. 

 

Рисунок 14 – Однородные координаты проекции i-той опорной точки 

Вектор оценок параметров ВИНС x̂  выражается как композиция истинных 

значений и ошибки X , являющейся гауссовой случайной величиной с нулевым 

математическим ожиданием: 

ˆ ,= x x X     1...,
T

T T

s N
 =  X X X ,    1...i N= , (5) 

bcC

Плоскость zc  = 1 

qi 
я 

i-тая опорная точка 

С 

xc 

yc 

zc 
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где 
sX , 

iX  – векторы ошибок оценивания параметров БИНС и опорных точек; 

X  – вектор ошибок оценивания параметров ВИНС;  

  – оператор ретракции [20], определяемый в зависимости от выбранной 

параметризации ошибок; сопровождается оператором обратного  

отображения : ˆ=X x x . 

Задачу оценивания параметров ВИНС можно решать, интегрируя уравнения 

БИНС (6) в промежутках между поступлениями измерений СТЗ, а в момент их 

поступления – вырабатывая поправки к оценкам на основе невязок результата 

измерения и его прогнозируемого значения, в соответствии с (7). 

( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 2 , , .hb hb gyr gyr h hb acc acc h h h= + = + + =q q ω b v C n b g r v   (6) 

1
ˆ ˆ ˆ ˆ, ,..., , ( , ,0)

T
T T CV

N i i s ih   = = −  qx x KY Y Y Y Y x x ,    1...i N= , (7) 

где K  – коэффициент усиления по невязке; стрелкой обозначено присвоение 

значения. 

Вычисление коэффициента K  в ОФК производится на основе расчетной 

матрицы ковариаций вектора ошибок X , итеративно обновляемой в соответствии 

с линеаризованными относительно ошибок моделями измерений (4) и динамики во 

времени (6). В работе [4] приведен алгоритм ОФК для ВИНС с вектором 

параметров, аналогичным (8), для двух определений оператора ретракции  : 

первое приводит к классической формулировке ОФК-ВИНС; второе – к ОФК-

ВИНС с право-инвариантной ошибкой. 

В рамках данной главы предлагаемый алгоритм ББФК тестируется в 

приложении к ВИНС в классической формулировке, со следующей 

параметризацией ошибок: 

15 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1, , 1...
T

T T T T T i

s h h h gyr acc i hδ δ δ δ δ δ i N       
 = = = φ r v b b rX X , (8) 

( ) ( ) ( )

( ) ( ) ( ) ( )1 1

cos(|| || 2),sin(|| || 2) || ||ˆ , , ,

, , ,..., .

TT T TT

hb h h h h

T
T TT T N N

gyr gyr acc acc h h h h

δ δ δ δ δ δ

δ δ δ δ


=  + +  

+ + + +


φ φ φ φ q r r v v

b b b b r r r r

x x X =

 (9) 

Получение линеаризованных моделей динамики и измерений для ВИНС в 

классической формулировке рассматривается в [3], [54]. Запись данных моделей с 

использованием матриц-параметров алгоритма ББФК приведена в п. 2.7.3.1. 
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Для совместимости с ВИНС с различной параметризацией ошибок, например, 

право-инвариантными ошибками, рассматриваемыми в главе 3, и другими типами 

визуальных признаков, помимо опорных точек, в п. 2.2 – 2.6 алгоритм ББФК 

описывается обобщенно, без раскрытия компонентов матриц и векторов. 

 Модели динамики и измерений ББФК 

ББФК использует линеаризованную модель ошибок ВИНС. В вектор ошибок 

1...,
T

T T

s N
 =  X X X  входят: 

• sX  – вектор ошибок оценивания параметров БИНС; 

• , 1...i i N=X  – векторы ошибок оценивания параметров N визуальных признаков. 

Вектор оценок параметров ВИНС 1..
ˆ ˆ ˆ,

T
T T

s N
 =  x x x выражается через вектор их 

действительных значений 1..,
T

T T

s N
 =  x x x и вектор ошибок Xсогласно выражению  (5), 

посредством оператора ретракции.  

Вектор параметров БИНС sx  описывает скорость, положение и ориентацию 

подвижного объекта, параметры модели инерциальных датчиков. Вектор 

параметров визуального признака ix  описывает расположение i-того признака в 

выбранной системе координат. 

В данном пункте обосновывается выбор матриц-параметров, используемых для 

описания линеаризованных моделей динамики и измерений ББФК. Стандартные для 

ОФК техники линеаризации [15], [76] применяются к нелинейным моделям ВИНС, 

представленным в общем виде. Рассматривается применение линеаризованных и 

нелинейных моделей на различных этапах обработки информации для ВИНС с 

комплексирующим фильтром, оперирующим разностной информацией (невязками, 

поправками). 

2.2.1 Модель измерений 

Рассмотрим нелинейную модель измерений СТЗ, заданную  функциями 

измерений i-того признака ( , , ), 1...z
i s i ih x x ν i N= : 
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( , , ), 1...z
i i s i ih i N= =z x x ν  (10) 

где iz  – вектор измерений СТЗ, связанный с i-тым признаком; 

( )0,z T
i iv ivν L LN  – шум измерений i-того признака, не коррелированный с 

шумами измерений других признаков: cov( , ) 0z z
i j =ν ν  при j i ; 

ivL  – квадратно-корневой фактор матрицы ковариаций: cov( , )z z T
i i iv iv=ν ν L L . 

Здесь и далее курсивными символами , , z
s i ix x ν  обозначены формальные 

аргументы функций (для отличия от фактических значений аргументов, в данном 

случае , , z
s i ix x ν ). 

Размерность и физический смысл iz  зависят от конкретной реализации ВИНС; 

для точечного признака в качестве iz  выступают координаты его проекций на 

плоскость изображения. Предположение некоррелированности шумов измерений 

различных признаков 
z
iν  друг с другом является стандартным для моделей 

измерения ВИНС [23], [27], [7]. В зависимости от типа камеры и 

наличия/отсутствия ее предварительной калибровки вектор параметров sx  может 

быть расширен оценкой запаздывания времени съема кадра, а также оценками 

калибровочных коэффициентов камеры [77], [78]. 

Обозначим как ˆ iz  прогнозируемое значение вектора измерений, рассчитанное 

на основе текущих оценок параметров БИНС и визуальных признаков:  

ˆ ˆ ˆ( , ,0), 1...i i s ih i N= =z x x . (11) 

Невязка iY  между вектором измерений iz  и его прогнозируемым значением ˆ iz   

выражается следующим образом: 

ˆ ˆ ˆ ˆ ˆ( , , ) ( , ,0) ( , , , , ), 1...z y z
i i i i s i i i s i i s i s i ih h h i N= − = − = =Y z z x x ν x x x x X X ν . (12) 

Разложив (.)y
ih  в выражении (12) в ряд с точностью до линейных членов в 

окрестности точки 0 ˆ ˆ( , ,0,0,0)s ip = x x , получим: 

( ) ,z z
i iv i is s i i s i io= − − + + +Y H ν H X H X X X ν  (13) 



42 

 

где 
0

y
i

iv z
i

p

h

ν

 
=    

H  – матрица Якоби для шума измерений; 

0

y
i

is
s p

h

x

 
= −   

H  – матрица Якоби для ошибок параметров БИНС (матрица 

измерений ошибок БИНС); 

0

y
i

i
i p

h

x

 
= −   

H – матрица Якоби для ошибок параметров признака (матрица 

измерений ошибок признака). 

Линеаризованная модель ошибок измерений, используемая в ББФК, получена 

отбрасыванием нелинейных членов в (13). Модель описывает вектор невязок iY  

как линейную комбинацию шума измерений, ошибок параметров БИНС и ошибок 

параметров расположения i-того признака: 

, 1...i iv i is s i i i N= − − =Y M ν H X H X , (14) 

где (0, )i Iν N  – нормализованный вектор шума измерений: 
z
i iv i=ν L ν ; 

ivM  = iv ivH L . 

Здесь и далее нормализация векторов шума используется для уменьшения 

числа матричных параметров алгоритма фильтра ( ivM  вместо ivH  и ivL ), а так же 

для сокращения вычислений ( ivM  нередко является диагональной матрицей). 

Линеаризованная модель ошибок измерений (14) используется на этапе 

коррекции фильтра для определения корреляционных связей между вектором 

невязок iY  и векторами состояния модели ошибок sX , iX ; исходя из этой 

информации о корреляциях определяются оптимальные коэффициенты усиления 

Калмана. Вычисление же самого вектора невязок производится за рамками фильтра 

согласно выражению (12), в котором используется  нелинейная модель измерений. 

2.2.2 Модель динамики 

Рассмотрим нелинейную модель динамики для некорректируемых оценок 

ВИНС ˆ sx , ˆ , 1...i i N=x , заданную функциями динамики ( , )s s sf x u , ( , , ), 1...i i s sf x x u i N= : 
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ), ( , , ), 1...s s s s i i i s sf f i N=x = x u x = x x u  (15) 

где ˆ u
s s s= +u u w  – вектор входных воздействий, включающий в себя компоненты 

векторов угловой скорости и кажущегося ускорения подвижного объекта, а так же 

влияющие величины модели инерциальных датчиков; 

su  – детерминированная часть вектора входных воздействий модели динамики 

БИНС;  

u
sw  – случайная часть вектора входных воздействий модели динамики БИНС, 

представленная белым шумом. 

Функция динамики БИНС ( , )s s sf x u  описывает изменение оценок 

навигационных параметров во времени при заданных угловой скорости и 

кажущемся ускорении подвижного объекта. 

Функции динамики признаков ( , , ), 1...i i s sf x x u i N=  описывают изменение 

параметров расположения признаков в следствии перемещения и вращения 

подвижного объекта, что имеет место при параметризации в связанной с 

подвижным объектом системе координат. При параметризации неподвижных 

признаков в опорной системе координат ( , , )i i s sf x x u  = 0,  1...i N= . 

Нелинейные уравнения динамики для действительных значений векторов 

параметров ВИНС sx , , 1...i i N=x , записываются следующим образом: 

( , ), ( , , ), 1...s s s s i i i s sf f i N=x = x u x = x x u . (16) 

Линеаризовав систему уравнений (15-16) относительно ошибок =X x x  в 

предположении их малости, получим уравнения динамики линеаризованной 

модели ошибок ВИНС в непрерывном времени: 

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ), 1... .

u
s s s ws s

u
i i i is s i ws s

t t t t

t t t t t t i N

= +

= + + =

X A X A w

X A X A X A w
 (17) 

Для малого шага по времени Δt  справедливо: 

Δ

Δ

( Δ ) ( ) (Δ ),

( Δ ) ( ) ( ) (Δ ), 1... ,

u
s s s ws s

u
i i i is s i ws s

t t t o t

t t t t o t i N

+ = + +

+ = + + + =

X F X F w

X F X F X F w
 (18) 

где ( )Δ , ( ), Δ , ( )Δ , ( )s s ws us i i is is i ws iusI t t t I t t t t +   +  F A F A F A F A F A ; 
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ΔΔ ( )
t tu u

s st
τ dτ

+
= w w  – дискретный белый шум, ( )Δcov u T

s w w=w L L . 

Линеаризованная модель динамики ошибок ВИНС в дискретном времени c 

шагом Δt , используемая в ББФК на этапе прогноза, получена на основе (18), 

временные индексы упущены для улучшения читаемости выражений. 

,

, 1... ,

s s s ws s

i i i is s i w i i ws s i N

= +

= + + =

X F X M w

X F X F X M w + M w
 (19) 

где sX  – значение sX  после этапа прогноза; 

iX  – значение iX  после этапа прогноза; 

(0, )s INw , (0, ), 1...i I i N=Nw  – нормированные векторы 

динамического шума, ( )cov , 0i s =w w , ( )cov , 0i j =w w при j i ; 

,ws ws ws i ws i ws ws= =M F L M F L . 

По сравнению с (18), в (19) были искусственно добавлены динамические шумы 

признаков , 1...i i N=w . Данные шумы могут использоваться для учета 

неточностей модели в рамках техники завышения ковариаций; так же они 

возникают в случае подвижности признаков.  

Матричные параметры предлагаемой линеаризованной модели (19) достаточны 

для описания динамических перекрестных связей межу ошибками признака и 

ошибками БИНС, возникающих при параметризации признаков в связанной с 

подвижным объектом системе координат. В случае, когда неподвижные 

визуальные признаки рассматриваются в опорной СК, уравнения динамики 

признаков упрощаются до , 1... .i i i N= =X X  

Линеаризованная модель динамики ошибок (19) используется на этапе 

прогноза фильтра для определения эволюции матриц ковариаций для sX , iX  за 

время, прошедшее с момента предыдущего измерения; расчет самих оценок 

векторов параметров ВИНС ˆ sx , ˆ ix , 1...i N=  производится за рамками фильтра 

согласно нелинейной модели динамики (15). 

2.2.3 Модели подсистем на схеме модели ВИНС 

Связи между подсистемами с линеаризованными и нелинейными моделями в 
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ВИНС с комплексирующим фильтром, оперирующим разностной информацией, 

иллюстрирует рисунок 15 (для наглядности рассмотрена ВИНС с одним i-тым 

визуальным признаком). Как показано на рисунке, нелинейные модели используются 

при вычислении инерциальных оценок параметров ВИНС ˆ ˆ,s ix x  и прогнозируемых 

значений измеряемых величин ˆ iz . Комплексирующий фильтр использует 

линеаризованные модели ошибок для поддержания информации о текущих 

корреляциях между ошибками оценок, между ошибками оценок и невязками 

измерений. В рамках линейной фильтрации эта информация позволяет вычислять 

оптимальные коэффициенты усиления по невязкам. Параметры корреляционных 

связей условно показаны на схеме как XP  – ковариационная матрица вектора 

,
T

T T
s i

 =  X XX , ,X YP  – ковариационная матрица вектора ,
T

T T
i

  X Y . 

Динамика оценок 

параметров ВИНС

Динамика 

параметров ВИНС 

( , , )z
i i s i ih=z x x ν

z
iν

ˆ ˆ ˆ( , ,0)i i s ih=z x x

Измерения СТЗ (с частотой 1/Dt)

Прогноз измерений СТЗ 

K 

Расчет оптимальных 

коэффициентов K

и ковариаций 

апостериорных оценок

Расчет  

по  линеаризованной модели измерения СТЗ: 

i iv i is s i i= − −Y M ν H X H X

s s s ws s

i i i is s i w i i ws s

= +

= + +

X F X M w

X F X F X M w + M w

 Переход к новой 

итерации фильтра

(с частотой 1/Dt)

Расчет 

  по линеаризованной модели динамики: 

Комплексирующий фильтр

iYПоправки к 

оценкам

K

XPXPXP

ˆ ˆ,s ix x

СТЗ iz

ˆ iz

,s ix x

Расчет матриц 

линеаризованных 

моделей

,X YP

,X YP

XP

Инерциальная подсистема

su

ˆ ˆ ˆ( , )

ˆ ˆ ˆ ˆ( , , )

s s s s

i i i s s

f

f

x = x u

x = x x u

( , )

( , , )

s s s s

i i i s s

f

f

x = x u

x = x x u

u
sw

ˆ su

 

Рисунок 15 – Модели подсистем на схеме модели ВИНС 
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 Блочная фильтрация данных ВИНС в ББФК 

Перед включением новых визуальных признаков в рекуррентный алгоритм 

фильтрации, производится инициализация параметров их расположения с 

использованием текущих навигационных оценок и измерительных данных первого 

наблюдения признака: 

0 0 0ˆ ˆ( , ), 1...i i s iinit i N= =x x z , (20) 

где ( , )i s iinit x z  – функция инициализации параметров расположения признака; 

0ˆ sx  – вектор оценок параметров БИНС в момент инициализации; 

0
iz  – вектор измерений, связанный с i-тым признаком, в момент инициализации. 

Линеаризованная модель ошибок процедуры инициализации i-того признака 

описывает ошибки его параметров 
0
iX  как линейную комбинацию ошибок данных, 

использовавшихся для начального оценивания его расположения:  

0 0 0 0 0
i i s s i v i=  +X М X M ν ,   1...i N=  (21а) 

где 
0
sX  – вектор состояния модели ошибок БИНС в момент инициализации; 

0
iν  – шум измерений i-того признака, использовавшихся при его 

инициализации; 

0 0

0 0 0 0
,

ˆ ˆ ˆ ˆ( , ) ( , )

i i
i s i v

s is i s i

init init

x z

 
= =

 
M M

x z x z
 – матрицы Якоби функции 

инициализации признака. 

Структуру модели ошибок параметров точечного визуального признака 
0
iX  

сразу после инициализации (21а) иллюстрирует рисунок 16. Для наглядности 

рассматривается система с 1-ой пространственной степенью свободы подвижного 

объекта (на примере колесного робота), использующая в качестве визуальных 

признаков опорные точки, выделяемые на текстурированной сцене, лежащей в 

заданной плоскости. Показан один признак – i-тая опорная точка. 
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Рисунок 16 – Структура ошибок параметров расположения точечного визуального 

признака после инициализации: 

робот, оснащенный видеокамерой, движется параллельно оси Ox. В момент времени t0 на 

текстурированной сцене, лежащей в плоскости Oxy , обнаружен новая i-тая опорная точка.  Координаты 

робота ys
0, zs

0 и ориентация камеры в системе координат Oxyz  известны без погрешности; для xs
0 известна 

оценка 0 0 0ˆs s sx x= + X , где  0
sX  – ошибка оценки. На основе зашумленного измерения 0 0

i i i= +z νp , оценки 

положения робота 0 0 0ˆ( , , )s s sx y z  и параметров ориентации камеры производится инициализация оценки 

положения i-той опорной точки в плоскости Oxy (на рисунке положение отмечено символом «»). 

Ошибка оценки положения i-той опорной точки после инициализации 0
iX  определяется ошибками 

данных, использованных при ее вычислении: 0
iν , 0

sX . Структура 0
iX  показана на рисунке за счет 

изображения взаимосвязи между доверительными эллипсами компонентов модели ошибок: 0
iX , 0

sX , 0
iν .  

Рассмотрим ВИНС, включающую N признаков сразу после их инициализации, 

причем в модели инициализации (21а) шумы измерений 0
iν , 1...i N=  не 

коррелированы с 0
sX  и друг с другом. В этом случае сразу после инициализации 

ошибки признаков 0
iX  коррелированы между собой только посредством 0

sX , 

размерность которого не зависит от N и много меньше размерности полного 

Xs
0 

 

 
Xi

0 

 
 

 is M 0 Xs
0 

 
pi 

C 

  –  Плоскость изображения 

C  –  Оптический центр 

rci –  Радиус-вектор i-той опорной точки из 

          начала СК  камеры 

pi  –  Проекция rci  на плоскость   

Xi
0, Xs

0,   –  компоненты модели  ошибок 

(представлены своими  доверительными эллипсами) 

x 
y 

z 

 

rci 

O 
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вектора состояния ВИНС 00
1..

T
TT

s N
 
 
X X  при характерных значениях N > 100. 

Вклады шумов измерений 0 0 0
i i v i=γ M ν  можно рассматривать как 

некоррелированные остатки в ошибках признаков 0
iX :  

( ) ( ) ( )

0 0 0 0

0 0 0 0 0 0 0

, 1... ,

~ 0, , cov , 0, cov , 0, .

i i s s i

T
i i i i s i j

i N

j i

=  + =

= = N

X М X γ

γ L L γ X γ γ
 (21б) 

С учетом независимости шумов измерений в модели (14), некоррелированность 

остатков 0
iγ , 1...i N=  в (21б) позволяет на первом этапе коррекции получить 

оптимальную по Калману апостериорную оценку полного вектора состояния 

системы 00
1..

T
TT

s N
 
 
X X  со сложностью O(N) в две стадии: оценив сначала 0

sX , а 

затем, – независимо друг от друга  – 0
iγ  , 1... .i N=  При этом ошибки апостериорных 

оценок 0
iX  сохранят строение, аналогичное строению ошибок сразу после 

инициализации (21б): 

0 0 0, 1...i i s s i i N=  + =X М X γ , (21в) 

где 0
iγ  – остаток, не коррелированный с 0

iX  и 
0 ,j j iγ . 

Подробное обоснование используемого в ББФК способа расчета оптимальных 

по Калману оценок со сложностью O(N) приведено в пункте  2.4. 

Для проведения этапа коррекции со сложностью O(N) на произвольной 

итерации фильтра достаточно иметь на ней разложение iX , обобщающее (21б): 

, 1...i i c с i i N=  + =X М X γ , ,
T

T T
c s e

 
 

X = X X , ,i c i s i e
 =  М M M , (21) 

где ( )~ 0, T
i i iNγ L L  – остаток ошибки iX , не коррелированный с сX  и ,j j iγ ; 

( )0, T
с c cNX L L  – общий вектор состояния (представляет коррелированные 

компоненты ошибок параметров ВИНС); 

eX  – расширение общего вектора состояния (относительно начального значения 

0 0 )c s=X X ; 

, 1...i c i N=M  – матрицы проекций iX  на сX . 
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Матрицы проекций , 1...i c i N=M  и факторы матриц корреляций , , 1...c i i N=L L  

в разложении (21) не только описывают корреляции между ошибками признаков 

iX  и общим вектором сX , но и неявно задают совместную ковариационную 

матрицу 
1...NXP  для ошибок всех N признаков: 

1...

1 1 1 1 1

1

N

T T T T T
c c c c c c c N c

T T T T T
N c c c c N c c c N c N N

 +
 

=  
 

+  

X

М L L М L L М L L М

P

М L L М М L L М L L

. (22) 

Недостатком разложения (21) является то, что в условиях модели динамики (19) 

размерность расширения общего вектора состояния eX  увеличивается на 

( )dimw sn = w  на каждом этапе прогноза. Это происходит потому, что шум модели 

динамики sw  «стирает» информацию о прошлых состояниях ошибок БИНС, 

содержащуюся в sX . В результате, начиная с некоторой итерации возросшая 

размерность eX  лишает алгоритмы, использующие разложение (21), преимуществ 

по времени вычислений относительно стандартных реализаций ОФК. 

Увеличение размерности eX  на каждом шаге прогноза можно показать на 

примере системы с упрощенной моделью динамики (19а), полученной выбором 

s =F I , i =F I , ws =M I , 0i w =M , 0i ws =M  в модели динамики (19): 

,

, 1... ,

s s s

i i i N

= +

= =

X X w

X X
 (19a) 

где sX  – значение sX  после этапа прогноза; 

iX  – значение iX  после этапа прогноза. 

Рассмотрим ВИНС с моделью динамики (19а). Пусть ошибки признаков iX  

разложены в соответствии с (21) на составляющие, линейно зависящие от общего 

вектора сX , и некоррелированные остатки iγ . Получим разложение вида (21) для 

ошибок признаков после этапа прогноза iX : 
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( ) ,

, 1... ,

i i i c с i i s s i e e i

e
i s s s i e e i i s s i e i s i

s

i c c i i N

= =  + = + =

 
 = − + = − + =  

 
= + =

X X М X γ M X +M X γ

X
M X w + M X γ M X + M M γ

w

M X γ

 (23) 

где ,
T

T T
c s e

 
 

X = X X ,  

,
T

T T
e e s

 
 

X = X w ,  

i i=γ γ  – остаток ошибки iX , не коррелированный с сX  и ,j j iγ ; 

, ,i c i s i e i s
 = − M M M M . 

Как видно из (23), в рассмотренном примере сохранение разложения вида (21) 

для ошибок признаков после этапа прогноза iX  потребовало расширения вектора 

eX  на ( )dim sw  элементов.  

Вернемся к общему случаю. Для ограничения роста вычислительной сложности 

в ББФК используется eX  фиксированной размерности ne  ( ne – параметр фильтра). 

В связи с ограничением длины eX  необходимо на каждом этапе прогноза 

производить аппроксимацию ошибок параметров признаков разложением  

вида (21):  

1 1 1

Некоррел.  СВКоррел. СВ

c

c

N Nc N

     
     

  +     
         

X М γ

X

X М γ

, (24) 

где , 1...i c i N=M  – матрицы проекций iX  на сX ; 

, 1...i i N=γ  – остатки ошибок iX , некореллированные с сX  и друг с другом. 

В ходе аппроксимации возникает задача поиска таких матриц-параметров 

уравнения динамики для расширения общего вектора состояния eX   

e e c c e ws s= +X F X F w , (25) 

чтобы информация о корреляциях ошибок признаков, представленная, согласно 

выражению (22), в матрицах проекций iX  на сX , была «сохранена» с 

минимальными потерями.  
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В пункте 2.5 обосновывается подход к решению данной задачи, основанный на 

методе главных компонент [79], реализующий наилучшую низкоранговую 

аппроксимацию матрицы проекций нормированных ошибок признаков, имеющей 

ранг dim( )e sn + w , матрицей ранга en . Линейная от N вычислительная сложность 

достигается благодаря тому, что строение 
0
iX , 1...i N=  при инициализации 

удовлетворяет разложению (21б), поэтому параметры аппроксимирующего 

разложения на последующих итерациях фильтра можно вычислять рекуррентно на 

основе предыдущих значений.  

Применение аппроксимирующего разложения (24) позволяет сохранить 

блочное строение матрицы ковариаций полного вектора состояния (22), 

предотвращая обработку корреляционных связей «всех со всеми», которая 

является причиной кубической вычислительной сложности этапа коррекции 

стандартной реализации ОФК. 

На рисунках 17 – 18 приведены схемы формирования апостериорных оценок 

ББФК и ОФК (вычисление оптимальных коэффициентов усиления и обновление 

значений матриц ковариаций не отображено). Сравнение схем свидетельствует об 

упрощении этапа коррекции при использовании аппроксимации (24).  

Блок «С» (общий вектор 

состояния системы)

Поправки к оценкам 

векторов состояния блоков

Блок 1 (признак 1)

Блок  2 (признак 2)

Блок 1 (признак 1)

Блок 2 (признак 2)

Блок  N (признак N) Блок N (признак N)
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Рисунок 17 – Схема коррекции оценок ББФК 
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Рисунок 18 – Схема коррекции оценок ОФК  

Подход, применяемый в ББФК, родствен децентрализованным фильтрам 

Калмана, ДКФ [62] [67] [66], но с настраиваемой точностью аппроксимации ОФК 

в рамках метода главных компонент. Это позволяет избегать излишне 

консервативного оценивания и достигать пренебрежимо малых отклонений от 

оценок ОФК. Также, в рамках ББФК локальные фильтры не оценивают общую 

часть вектора состояния системы, что обеспечивает снижение вычислительной 

сложности по сравнению с ДКФ c O(nc
3) до O(nc

2), где nc – размерность общей части 

вектора состояния. ББФК является развитием фильтра, описанного в [80], 

отличаясь от него способом формирования расширенного вектора состояний и 

оптимизацией вычислений. 

Основное функциональное отличие ББФК от MSCKF-подобных фильтров 

состоит в том, что он позволяет оценивать со сложностью O(N ) текущие векторы 

состояния N визуальных признаков и БИНС в условиях одновременного 

наблюдения всех N признаков в течении произвольного времени, не используя 

скользящего окна измерений.  

Фильтр оперирует отдельными блоками, что позволяет легко добавлять и 

исключать визуальные признаки и другие типы измерителей, имеющие или не 



53 

 

имеющие собственные векторы состояния; контролировать целостность фильтра.  

В рассматриваемой реализации ББФК используется квадратно-корневая 

факторизация матриц ковариаций блоков. Ортогонализованные фильтры Калмана, 

к числу которых относятся фильтры с квадратно-корневой факторизацией, 

характеризуются большей численной устойчивостью по сравнению с 

классическими реализациями [81]. 

2.3.1 Подпространства, порожденные случайными величинами 

Подпространством YH , порожденном центрированной гауссовой векторной 

случайной величиной : Ω m→Y  в гильбертовом пространстве H  [82] 

называется линейное подпространство, образованное всеми линейными 

комбинациями элементов Y: 

 ( )1 2span , ,..., my y y=YH . (26) 

Для центрированной гауссовой векторной случайной величины : Ω n→U  

будем писать, что U YH H , если каждый элемент u k  YH : 

1 1 ... , 1...k k km mu a y a y k n  = + + =U YH H . (27) 

Другими словами, если подпространство UH  лежит в  подпространстве YH , 

то все элементы U  могут быть выражены через элементы Y . В контексте ББФК 

операции над подпространствами H  используются для того, чтобы описать 

процесс поиска фиксированного числа случайных величин, через которые 

элементы вектора ошибок оценок фильтра, являющегося векторной случайной 

величиной большой размерности, могут быть экономно выражены.  

Другие удобные свойства пространства H следуют из выбранной на нем 

метрики: корреляция между двумя случайными величинами равна скалярному 

произведению векторов, представляющих их в данном пространстве; с.к.о. 

случайной величины равно норме представляющего ее вектора. Ортогональности 

векторов в гильбертовом пространстве соответствует нулевая корреляция 

случайных величин (отсутствие линейной зависимости) и, следовательно, 

информационная независимость в контексте линейной фильтрации.  

Благодаря этим свойствам представление случайных величин в H  упрощает 
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геометрическую интерпретацию фильтра Калмана, в особенности, его 

ортогонализованных реализаций; позволяет описывать развитие случайных 

процессов при помощи операций над наборами векторов. Так, вычисления в 

ортогонализованных реализациях фильтра Калмана [81] сводятся к рекуррентному 

обновлению ортогонального базиса изменяющегося во времени подпространства 

XH , порожденного вектором ошибок оценок X, и выражении элементов X в нем. 

Ортогонализация набора векторов производится с использованием таких 

алгоритмов, как QR-разложение или модифицированный взвешенный метод 

Грама-Шмидта [81]. 

Операция проектирования ( )
Y

XHP  векторной случайной величины X на 

подпространство YH , порожденное другой векторной случайной величиной Y 

дает оптимальную (в смысле минимума среднеквадратической ошибки) оценку 

случайной величины X, построенную исключительно на основе информации о 

значении Y [82]. В ортогонализованных реализациях фильтра Калмана данная 

операция используется для вычисления оптимальной поправки к вектору ошибок 

оценок по известному вектору невязок, а также для вычисления апостериорных 

параметров ковариации. 

Термины и обозначения, связанные с подпространствами, порожденными 

случайными величинами, далее используются в пунктах 2.4 и 2.5 при обосновании 

алгоритмов этапов коррекции и прогноза ББФК. 

 Обоснование алгоритма этапа коррекции ББФК 

Рассмотрим ВИНС с моделью измерений (14) и ошибками признаков, 

разложенными в соответствии с (21). Запишем условие некоррелированности 

остатков , 1...i i N=γ  с использованием оператора прямой суммы гильбертовых 

подпространств: 

, 1... ,

,
c i

i ic c i

i

i N= + =

=  X X γ

X M X γ

H H H  (28) 

где (.)H  – подпространство в гильбертовом пространстве, порожденное случайной 

величиной (.) . 
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Для такой системы оптимальные по Калману апостериорные  оценки векторов 

состояния можно рассчитать в две стадии: (I) оценивание общего вектора ошибок 

и (II) оценивание векторов ошибок визуальных признаков. 

2.4.1 Нахождение оптимальной апостериорной оценки общего вектора состояния 

Запишем выражение для оптимальной апостериорной оценки общего вектора 

состояния:  

( ) 1, ...
T

T T
с c c N

 = −
 Y

X X X Y = Y YHP , (29) 

где сX  – оптимальная апостериорная оценка общего вектора состояния; 

(.)P  – оператор проектирования на подпространство (.). 

Покажем, что задача вычисления оптимальной поправки ( )ˆ
с c= − HP Y

X X  имеет 

линейную вычислительную сложность. Невязку уравнения измерений i-того 

признака iY  можно выразить через сX  и приведенный шум i-того признака ˆ
iν : 

( ) ˆˆ , 1...i iv i ic c i ic c i i ic c i N= − − + = − =Y M ν H X H M X γ ν H X , (30) 

где ˆ
ic ic i ic= −H H H M – приведенная матрица измерений общего вектора состояний 

i-того признака; 

ˆ
i iv i i i= −ν M ν H γ  – приведенный шум измерений i-того признака. 

Из (28) и (14) следует, что ˆ
iν  для двух различных признаков не коррелированы. 

Таким образом, задача (29) эквивалентна задаче оценивания сX  по N независимым 

векторным измерениям. Известно, что такая задача имеет вычислительную 

сложность ( )O N , что напрямую используется, например, на этапе коррекции 

фильтра Калмана в информационной формулировке [83]. В ББФК в качестве 

параметров ковариации используются квадратно-корневые факторы матриц 

ковариаций, и переход к факторам информационной матрицы (требующий 

операцию обращения) не желателен, так как приводит к ухудшению численной 

устойчивости фильтра. Поэтому в ББФК для перехода от (30) к эквивалентной 

системе уравнений с матрицей измерений сниженной размерности [ncnc] 

используется QR-разложение матрицы  
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( ) ( )
1

1 1
ˆ ˆ1

ˆ ˆ, ... ,
N

T
T T

Nсс
− − 

=
  

ν νH L H L H , (31) 

где ˆ iν
L  –квадратно-корневой фактор матрицы ковариации приведенного шума ˆ

iν . 

2.4.2 Нахождение оптимальных апостериорных оценок векторов состояния 

признаков 

Запишем выражения для оптимальной апостериорной оценки вектора 

состояния j-того признака:  

( )j j j= −
Y

X X XHP . (32) 

Рассмотрим остаточные невязки уравнений измерения признаков после 

определения оптимальной апостериорной оценки сX : 

ˆˆ , 1...i i ic c i N= − =Y ν H X . (33) 

Так как jX  входит в уравнение измерений только j-того признака, то выбор той 

или иной апостериорной оценки jX  не влияет на iY  при i  j. Поэтому 

оптимальную апостериорную оценку jX  можно получить используя не все iY , а 

только jY : 

j jc c j j j jc c j= + + = +X M X γ K Y M X γ , (34) 

где ˆ
jc jc j jc= −M M K H , 

ˆ
j j j j= +γ γ K ν , 

jK  – некоторый матричный коэффициент, подлежащий определению. 

Согласно выражению (32) проекция апостериорной оценки jX  на 

подпространство YH  равна нулю:  

( ) ( ) ( ) 0j jc c j= + =
Y Y Y

X M X γH H HP P P . (35) 

Так как из (29) ( ) 0jc c =
Y

M XHP , для выполнения (35) требуется 

( ) 0j =
Y
γHP . (36) 

Заметим, что согласно (30) выполнено 
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ˆc i
i

  H H HY X ν , (37) 

поэтому можно записать: 

( ) ( ) ( ) ( )
ˆ ˆc

j j j j

i i j

  =γH H H HP P P P
Y X ν ν

γ γ γ . (38) 

Таким образом, (35) будет выполнено, если выбором коэффициента jK  

обеспечить ( )
ˆ

0j
j

=
ν

γHP , т.е. оптимальное значение jK  является матрицей 

проекций jγ  на подпространство 
ˆ jν

H : 

( ) ( )
ˆ

ˆ
j j j

j

 − =
ν

ν γHPK . (39) 

Таким образом, окончательно получаем: 

( )
ˆ

, 1...

,

ˆ ˆ ,

i i i

i ic c i

i ic c i i

i

i N= − =

=

=

ν
HPγ γ γ

X M X + γ

X M X + K Y

 (40) 

где ( )ˆ
i i= − XHP Y

X  – оптимальная поправка к iX . 

Данная стадия этапа коррекции также имеет линейную вычислительную 

сложность от числа признаков – ( )O N . 

Так как для jγ  выполнено 

( ) ( ) 0, 1... ,j j
ic

i N i j= = = H HP P
γX

γ γ , (41) 

то этап коррекции сохраняет строение (28), т.е. для апостериорных оценок снова 

выполнено: 

, 1... ,

.
ic

i ic c i

i

i N= + =

=   γX X

X M X γ

H H H  (42) 

 Обоснование алгоритма этапа прогноза ББФК 

Рассмотрим этап прогноза для системы вида (28), с учетом того, что сX  

содержит динамическую часть sX  и расширение eX , несущее служебную  

функцию (21) : 
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, ,
e s e

T
T T

c s e
  = 
 

H H HX X γX = X X . (43) 

Пусть система подчиняется модели динамики (19). Подпространство, 

порожденное вектором состояния модели ошибок БИНС  после этапа прогноза sX  

содержится в подпространстве H p , образованном прямой суммой 
s

H X и 
s

H w : 

s ss
 H H =H Hp X wX

. (44) 

Представим H p  в виде прямой суммы 
sX

H  и ортогонального дополнения 
sγ

H : 

ss
= H H Hp γX

, (45) 

где ( ) ( )dim dim
s s

=γ wH H  при полном ранге sF . 

 Согласно определениям в (43) и (44) выполнено: 

с e
 X γH H Hp . (46) 

Чтобы строение (28) сохранилось для прогнозируемых оценок, достаточно 

чтобы 
с s с

 H H HX w X
, что можно удовлетворить, взяв в ,

T
T T

c s e
 
 

X = X X  в 

качестве eX  базисные случайные величины d следующего подпространства: 

 ( )
c s s es

=  H H H \H = H Hd X w γ γX
, (47) 

где d – ортонормированный базис.  

Такое решение приводит к росту размерности eX  на ( )dim
s

H w  на каждом 

этапе прогноза, что не приемлемо по соображениям вычислительной 

эффективности. Поэтому требуется введение аппроксимации eX фиксированной 

размерности. 

2.5.1 Аппроксимация eX  по методу главных компонент 

В ходе аппроксимации определяются ne «главных» независимых случайных 

величин из H d , отобранных по критерию максимизации нормы Фробениуса 

матрицы проекций нормированных ошибок признаков. Метод главных компонент 

реализован за счет следующей последовательности действий.  
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1. Выражение проекций ошибок признаков на H d  в базисе d; 

2. Приведение проекций ошибок признаков к общей единице измерения за счет 

применения выбранной нормировки (п. 2.5.4); 

3. Формирование общей матрицы проекций нормированных ошибок  

признаков A; 

4. Выбор в качестве eX  первых ne сингулярных векторов матрицы A (которые в 

данном случае и являются «главными компонентами»). 

Запишем в базисе d матрицу A проекций нормированных ошибок признаков iX  

на подпространство H d . Рассмотрим сингулярное разложение матрицы А: 

1 ...
T

T T
N

   =    d
A d X XHP ,    

Σ
Σ , ,

Σ

TeT
e e

  
   = =      

   
d d

d

A U V U U V V , (48) 

где U – матрица с ортонормированными столбцами,  

Σ– диагональная матрица с неотрицательными диагональными элементами 

(сингулярными числами), отсортированными в порядке убывания; 

V – ортогональная матрица. 

Так как сингулярные числа отсортированы в порядке убывания, норма 

проекции iX  на подпространство, образованное первыми ne правыми 

сингулярными векторами, максимальна среди всех подпространств размерности ne 

на H d , и именно они должны быть приняты в качестве eX : 

,T T
e e d

X = V d d = V d , (49) 

где d  – дополнение eX  до базиса dH . 

Выбор eX  (49) эквивалентен наилучшей аппроксимации матрицы А матрицей 

ранга ne :  

rank( )

ˆ ˆΣ , argmin
e

T
e e e F

A n

A
=

= = −A U V A A , (50) 

где .
F

 – норма Фробениуса. 
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2.5.2 Выражения для ошибок прогнозируемых оценок  

С учетом (19) и (49) получим аппроксимированные уравнения динамики 

ошибок параметров признаков: 

,

Σ ,

Σ .

i i i i

id i id

i is s e e e i id ic c i id

= +

= +

= + + = + +

d d

γ F γ w

γ F γ U d

X M X + U X γ γ M X γ γ

 (51) 

При выборе 1dim ...
T

T T
e Nn

      
X X  имеем ( )trace Σ 0=

d
, поэтому (28) будет 

выполнено для прогнозируемых оценок точно (аппроксимации не происходит). 

При выборе ne достаточно большим, чтобы ( ) ( )trace Σ trace Σe
d

, (28) будет 

выполнено приближенно в смысле метода главных компонент: 

1 1

1 1

... ... ,

... ... .

c

i
i

T T
T T T T

N N

T T
T T T T

N N

               

               

H H

H H

P P

P P
γ

d

d

X
X X X X

X X X X

 (52) 

Проекции векторов состояния измерителей на подпространство H
d

, 

порожденное базисными векторами, не вошедшими в eX , включаются в idγ , чтобы 

ковариационные матрицы измерителей остались точными после аппроксимации. 

Также, так как аппроксимация затрагивает только проекции векторов состояния 

измерителей на H d , то их матрицы проекций на sX  и их взаимные 

корреляционные матрицы с sX остаются точными. 

Описанный этап прогноза имеет линейную вычислительную сложность от 

числа измерителей – ( )O N .  

2.5.3 Учет погрешности аппроксимации для реализации консервативного 

оценивания 

Проекции векторов состояния измерителей на подпространство d
H  (51) 

включаются во вспомогательный вектор состояния idγ . Матрица ковариации idγ  
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дает оценку сверху для дисперсии составляющей внутри iγ , коррелированной с 

другими ,j j iγ , и используется для осуществления консервативного оценивания 

[62]. Смысл консервативного оценивания в данном случае состоит в том, чтобы при 

коррекции сX  использовать вместо неизвестной действительной матрицы 

ковариаций приведенных шумов измерений R ее оценку сверху R + : 

1 1 1 1

cov
v

N v N N N

R

 −  
  =
  −  

M ν H γ

M ν H γ
,    

( )( )

( )( )

1 1 1 1 1 1cov

cov

v d

N v N N N N N d

g

R blkdiag

g

+

  − +
  

=   
  − + 

  

M ν H γ γ

M ν H γ γ

. (53) 

где g  – коэффициент завышения ковариации. 

2.5.4 Выбор нормировки для применения метода главных компонент 

Рассмотрим влияние выбора нормировки на найденные в ходе аппроксимации 

компоненты eX . В случае отсутствия нормировки (тривиальной нормировки) 

, 1...i i i N= =X X , (54) 

в качестве eX  будет приниматься базис подпространства размерности en , с 

которым ассоциирована наибольшая возможная часть дисперсии 

1 ...
T

T T
N

     
HP d

X X . Такой подход может быть приемлемым, если компоненты 

, 1...i i N=X  имеют одну и ту же физическую размерность и одинаковые условия 

измерений; в общем же случае eX  будет чувствителен к смене единиц измерения. 

Поэтому предпочтительно применять ту или иную оберазмеривающую 

нормировку, обеспечивающую инвариантность к изменению масштаба.  

В текущей реализации алгоритма применяется нормировка следующего вида: 

1 , 1...
ii i i N−= =γX L X . (55) 

Раскрыв выражение (55) с учетом (21), получаем 

( )1 1 , 1...
i ii i с i ic с i i N− −=  + =  + =X γ γL М X γ L М X u , (56) 

где ( )0, I , 1...i i N=Nu  – некоррелированные векторные случайные величины 
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со стандартным нормальным распределением. 

Как видно из (56), нормировка (55) позволяет учесть различия в значимости 

коррелированных составляющих i сМ X  на фоне некоррелированных остатков iγ

; кроме того обеспечивая обезразмеривание iX . 

В п. 2.7.3 приведены результаты моделирования, указывающие на влияние 

выбора нормировки на оценки фильтра. 

 Алгоритм ББФК 

Алгоритм использует процедуры, стандартные для библиотек линейной 

алгебры: QR и SVD разложения, матричные и векторно-матричные произведения. 

Далее в псевдокоде алгоритма обозначение qr(*).R означает процедуру, 

возвращающую фактор R экономичного QR разложения матрицы (*) без 

вычисления фактора Q. Обозначение svd(*) означает процедуру экономичного SVD 

преобразования матрицы (*). Диапазоны строк и столбцов подматриц обозначены 

аналогично синтаксису Matlab с использованием символа «:».  Например, A [ :  , a : b ] 

обозначает подматрицу из столбцов матрицы A в диапазоне a … b.  

Введена следующая факторизация матриц ковариаций векторов состояния 

блоков фильтра:  

( )

( ) ( )

( )

cov ,

cov , cov ,

cov .

T
c c c

T T
i i i i d id id

T T T T
i ic c c ic i i id id

=

= =

= + +

X L L

γ L L γ M M

X M L L M L L M M

 

Используемые матрицы модели динамики и измерений введены в (1-2). 

Факторы матриц ковариаций шумов измерений i vM  должны быть невырожденные. 

Начальное значение фактора iL  должно быть невырожденным в связи с 

использованием 1
i
−

L  в качестве нормирующего множителя. Размерности векторов 

обозначены как: ( )dims sn = X , ( )dime en = X , ( )dimc cn = X , ( )dimw sn = w , 

( )dim
iX in = X , ( )dim

iY in = Y . 

2.6.1 Входные и выходные параметры 

В рамках каждой итерации фильтра на основе входной измерительной 
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информации (невязок измерений) производится расчет корректирующих поправок 

(рис. 19). На каждом шаге фильтр обновляет сL ,
iγ

L , icM , рассчитывает 

корректирующие поправки к sX  и iX , 1...i N= . 

 

 

Рисунок 19 – Входные и выходные параметры итерации алгоритма ББФК 

2.6.2 Этап прогноза ББФК 

На этапе прогноза производится расчет факторов матриц ковариаций векторов 

состояния блоков фильтра для прогнозируемых в соответствии с моделью 

динамики (19) оценок и процедурой низкоранговой аппроксимации (49). 

2.6.2.1 Вычисление параметров ковариации ошибок прогнозируемых оценок sX  

1. Используя значение квадратно-корневого фактора матрицы ковариаций 

общего вектора состояния на предыдущем шаге cL  и матрицы модели динамики 

(19), построим буферную блочную матрицу и рассчитаем R-фактор ee QR-

разложения: 

 ( )1: ,1: , .
0

s s

s w

T
T

s c n ns s
n n

Td
ws

qr I R+

  
        

      

F LL T

T
M

 

Верхний левый блок полученного R-фактора 
T
sL  представляет собой 

транспонированный квадратно-корневой фактор матрицы ковариаций для ошибки 

Быстрый 

блочный 

фильтр 

Калмана 
iY

1...i N=

Факторы 

матриц 

ковариаций 

Невязки измерений 

Апостериорные 

оценки 

(корректирующие 

поправки) 

Матрицы модели 

динамики и 

измерений 

 

  

  

Факторы матриц 

ковариаций 

(апостериорные) 
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прогнозируемой оценки sX . Блоки sT , dT  – используются для вычисления матриц 

проекций сX и sw  на 
ss

 γX
H H  ( sT , dT  соответственно) согласно (57) в базисе, 

образованном элементами ,
T

T T
s s

 
 
X γ . 

2. Вычисление матриц проекций cT и wT  на основе sT , dT : 

( ), ,s s s ssvdU V L  

1 ,T T T
s s s s d

− 
 

T T V U T  

   : ,1: 1: , :s s
c c n n

T L T  

 1: , :s s w
w n n n+ +

T T  

2.6.2.2 Вычисление параметров ковариации ошибок прогнозируемых оценок iX  

3. Расчет промежуточных факторов матриц ковариаций для ошибок 

прогнозируемых оценок признаков iX  ( icM  выражены в базисе, образованном 

элементами сX  до этапа прогноза). 

Начало. Для каждого блока i, 1...i N=  

ic i icM F M  

   : ,1: : ,1:s s
isic n ic n

 +M M F  

( )
.

T

Ti i
i T

i w

qr R
  
   
    

F L
L

M
 

Конец. 

2.6.2.3 Вычисление параметров ковариации и аппроксимация сX  

4. Производится расчет матрицы проекций векторов состояния признаков А 

(первые ns столбцов – проекции на 
sX

H , последние ne + nw столбцов – проекции 

на dH . В данной реализации фильтра для обезразмеривающей нормировки  

векторов состояния при вычислении dA  используются обратные факторы матриц 
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ковариаций 
1

i
−

L . 

1

T
T T

c c Nc
 
 

M M M  

1

T
T T

w ws N ws
 
 

M M M  

   1 : , 1: 1: , 1:
: ,

s c s c s c

T
T T

N c c w w c n n c n n n n+ + +
   =  +

   
A A A M T M T M L  

   
1 1

1 1 : , 1: : , 1:s c w s c w

T
T T

Nn n n N n n n
− −

+ + + +
 
 dA L A L A . 

5. Производится низкоранговая аппроксимация dA  в соответствии с (49); 

расчет блочных матриц проекций ошибок признаков на сX и d : 

( ).qr Rd dR A  

( ).svd Vd dV R  

 1 : , 1:
:

s c w

T
T T

N n n n+ +
  = 
 d d d dW W W A V  

   1 : ,1: : ,1:
: ,

s e

T
T T
c N c c n n

   = 
   dM M M A W  

 

6. Обновление квадратно-корневого фактора матрицы ковариаций для сX : 

0

0
e

s
c

nI

 
  

 

L
L  

7. Обновление факторов матриц ковариаций для ошибок прогнозируемых 

оценок признаков iX  с учетом погрешности аппроксимации (проекций на d ) 

Начало. Для каждого блока i, 1...i N=  

ic icM M  

 ( ): , 1:
.

e e w

T T
i n n ni

qr R
+ +


dd

L W  

( )
.

T

Ti i d
i d

T

i

qr R

  
  
  

  d

F M
M

L
 

Конец. 

2.6.3 Этап коррекции ББФК 

На этапе коррекции производится расчет факторов матриц ковариаций ошибок 
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апостериорных оценок фильтра в соответствии с моделью измерений (14),  

рассчитываются поправки ˆ ˆ,s iX X , 1...i N=  на ошибки априорных оценок. Так как 

фильтр оценивает состояния модели ошибок навигационной системы, а не самой 

системы, и поправки вводятся после каждой итерации фильтра, то математическое 

ожидание ошибок априорных оценок принимается равными нулю. 

2.6.3.1 Коррекция ошибок априорных оценок сX  и определение параметров 

ковариации  ошибок апостериорных оценок сX  

1. Расчет дисперсий, используемых при вычислении коэффициентов 

завышения ковариации (53): 

0dσ   

Начало. Для каждого блока i, 1...i N=  

1
i d v i i i d

−M M H M  

( )T
i d i d idσ trace M M  

d d i dσ σ σ +  

Конец. 

2. Расчет параметров эквивалентной системы уравнений измерений сниженной 

размерности для сX  (31), вычисление ˆ i
iX  – локальных поправок для iX  и 

параметров ковариации ошибок апостериорных оценок iX : 

10
cc n Y  

Начало. Для каждого блока i, 1...i N=  

i
d

i d

σ
g

σ
  

( ), .
T T

i i i i dqr g R+    L L M  

ˆ , .
T

T
v i i v i iqr R+      

L M H L  

1
ˆic v i i ic

−H L H M  

   
1

ˆ: ,1: : ,1:s s
v i isic n ic n
− +H H L H  
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1
ˆ

T
c c ic v i i

− +Y Y H L Y  

1
ˆ ˆ

T T T
i i i i v i v i

+ + − −K L L H L L  

Xi
i n i i −IG K H  

( ), .
T T

i i i i i vqr R   L G L K M  

i d i i dM G M  

i c i i cM G M  

   : ,1: : ,1:s s
i isic n ic n

 −M M K H  

ˆ i
i i iX K Y  

Конец. 

1

T
T T

c c Nc
 
 

H H H  

( ).cqr RH H  

 

3. Используя значение квадратно-корневого фактора матрицы ковариаций 

общего вектора состояния cL  и матрицы модели измерений (14), построим 

буферную блочную матрицу и рассчитаем  R-фактор ee QR-разложения: 

( )( ) ( )
.

00
c

T T
c c

T
nc

qr R
I

    
    
      

HL L

L
 

Нижний правый блок полученного R-фактора T
сL  представляет собой 

транспонированный квадратно-корневой фактор матрицы ковариаций для ошибки 

апостериорной оценки сX . 

4. Расчет поправок ˆ
cX  к оценкам общего вектора состояния и обновление 

квадратно-корневого фактора матрицы ковариаций ошибок сX : 

ˆ T
c c c cX L L Y  

c cL L  

5. Расчет поправок ˆ
iX  к оценкам векторов состояния iX  на основе ˆ

cX  и  ˆ i
iX : 
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Начало. Для каждого блока i, 1...i N=  

ˆ ˆ ˆi
i i ic c +X X M X  

Конец. 

 

Этап коррекции ББФК математически эквивалентен этапу коррекции ОФК в 

случае 0
Xi

i d n=M , 1...i N= . Консервативное оценивание при коррекции общего 

вектора состояний сX  реализовано за счет увеличения дисперсии 

коррелированных компонент idγ  в i d i dk σ σ= . Преимущество такого способа 

расчета множителя ik  по сравнению со стандартным [62] ik N=  заключается в том, 

что в момент добавления новых признаков не происходит автоматического 

увеличения ik  для старых признаков.  

Для удобства чтения в алгоритме фильтра упущены второстепенные детали: не 

отражены операции контроля абсолютной величины диагональных элементов 

матриц s , iL  (при нормировке), значений i dσ , – используемые для гарантии 

численной устойчивости. Не показаны ветвления алгоритма для случаев (a) 

отсутствия динамики у вектора состояния блока; (б) отсутствия вектора состояния 

у блока (nXi = 0); (в) отсутствия вектора измерения блока в текущий  

момент (nYi = 0).  

 Тестирование ББФК 

В данном пункте производится проверка свойств ББФК, ключевых для его 

применения в задачах ВИНС: консервативности и консистентности в условиях 

наличия неопределенности ненаблюдаемых параметров ВИНС, времени 

вычислений, сниженному по сравнению с ОФК, близости оценок к оценкам ОФК.  

Тестирование произведено в среде Matlab. Консервативность и консистентность 

ББФК проверены в рамках моделирования упрощенной линейной измерительной 

системы с одной пространственной степенью свободы. Cравнение оценок и 

времени вычисления ББФК и квадратно-корневой реализации фильтра Калмана 

произведено в среде Matlab для модели визуально-инерциальной навигационной 
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системы с коррекцией по статичным опорным точкам (параметризованных радиус-

вектором в опорной системе координат). Такая параметризация выбрана в связи с 

тем, что она наиболее проста для реализации; вопросы влияния эффектов 

линеаризации на точность фильтра не рассматривались. 

2.7.1 Тестирование консистентности ББФК при моделировании работы 

упрощенной ВИНС 

Рассмотрим задачу оценивания положения подвижного объекта с одной 

пространственной степенью свободы с использованием ВИНС, содержащей: 

• одноосевой акселерометр с интенсивностью белого шума измерений accσ ; 

• систему технического зрения, измеряющей с частотой 1/ Δt  относительное 

расположение N визуальных признаков (разность позиционных координат 

признаков и подвижного объекта) с с.к.о дискретного белого шума измерений .CVσ  

Вектор параметров БИНС  ,
T

s s sv x=x  включает в себя скорость и 

позиционную координату подвижного объекта; в качестве параметра i-того 

признака i ix=x   выступает его позиционная координата. 

Матрицы-параметры модели ошибок для описанной системы: 

1 0

Δ 1
s

t

 
=  

 
F , 1i =F ,  0 0is =F , 

Δ

0

acc
ws

t σ 
=  

 
M , 0i w =M , 0i ws =M  в модели 

динамики (19); 

 0 1s = −H , 1i =H , i v CVσ=M  в модели измерений (14). 

Позиционная координата признаков оценивается в момент их первого 

обнаружения на основе измерения СТЗ и оценки позиционной координаты 

подвижного объекта. В соответствии с моделью ошибок начальных оценок 

расположения признака (21а), начальные значения параметров ковариаций 

признаков равны: 

 0 0 1i s =М , 
0 1i v =М , 

0 0
i i v CV CVσ σ= =L М ,  1...i N= . (21а) 
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Начальное значение квадратно-корневого фактора матрицы ковариаций ошибок 

параметров БИНС 0 0diag( , )s v xσ σ=L , где 0
vσ  – с.к.о начальных оценок скорости, 0

xσ  

– с.к.о. начальных оценок позиционных координат подвижного объекта. 

Аналогично полноразмерной модели ВИНС, в рассматриваемой упрощенной 

модели начальная ошибка оценки позиционной координаты подвижного объекта 

не наблюдаема, т.е. действительные с.к.о  оценок позиционных координат 

подвижного объекта и признаков принципиально не могут опуститься ниже с.к.о 

начальной ошибки 0
xσ . Тем не менее, в ходе субоптимального оценивания может 

наблюдаться неограниченное уменьшение расчетного с.к.о, если не гарантирована 

консервативность оценок. 

При тестировании ББФК на консервативность и консистентность будем 

рассматривать предельный случай неоптимальности фильтра, имеющий место при 

ne = 0, а так же случаи  ne = 1, ne = 10. Будут сравниваться оценки двух вариантов 

фильтра: базового («консервативного»), и «оптимистичного», не использующего 

технику завышения ковариаций оценок: gi = 1, 1...i N=  в выражении (53). 

Выберем параметры моделирования. Установим число признаков N = 10, шаг 

по времени Δ 0.1 сt = , время моделирования Т = 100 с, с.к.о начальных оценок 

параметров БИНС 0 0.1 м сvσ = , 0 1 мxσ = , начальные оценки параметров БИНС 

0ˆ 0.2 м сsv = , 0ˆ 2 мsx = . Действительные значения параметров БИНС в течении всего 

времени моделирования равны нулю: 0 м сsv = , 0 мsx = . 

2.7.1.1 Сценарий 1 

Согласно сценарию 1, все 10 признаков обнаружены в начальный момент 

времени и остаются в поле зрения СТЗ  в течении всего времени моделирования. 

Установим 
20.05 м сaccσ = , 0.01 мCVσ = . 

При одновременном наблюдении всех N признаков «консервативный» вариант 

ББФК обеспечивает консервативность расчетного с.к.о; «оптимистичный» вариант 

систематически занижает расчетное значение с.к.о на каждой итерации (рис. 20).  
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         Время, с 

 
              Время, с 

Рисунок 20 – Сравнение «консервативного» и «оптимистичного» вариантов ББФК 

Установим 
20.005 м сaccσ = , 0.001 мCVσ = , чтобы добиться более выраженного 

эффекта недооценки с.к.о на точность оценок (рис. 21). 

 

         
 Время, с 

 
              Время, с 

Рисунок 21 – Сравнение «консервативного» и «оптимистичного» вариантов ББФК 

при измененных с.к.о шумов 

Как видно из рисунка 21, при выбранных параметрах наблюдается 

расходимость «оптимистичного» варианта ББФК. «Консервативный» вариант 

ББФК формирует корректные расчетное значение с.к.о и оценку позиционной 

координаты. 
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При повторном моделировании c ne = 1 расходимости «оптимистичного» 

варианта не наблюдается, поскольку в данных условиях моделирования ББФК c  

ne = 1 становится эквивалентен ОФК (погрешность аппроксимации ОФК нулевая), 

и оба варианта ББФК приводят к одинаковым оценкам и расчетным  

значениям с.к.о. 

Далее будем использовать только «консервативный» вариант ББФК. 

2.7.1.2 Сценарий 2 

Согласно сценарию 2, обнаружение каждого из признаков происходит в 

последовательные моменты времени ( )5 1 cit i= −  в интервале 0…50 с, все 

признаки остаются в поле зрения от времени обнаружения до конца 

моделирования. 

Установим 
20.05 м сaccσ = , 0.01 мCVσ = , произведем моделирование работы 

ВИНС с ББФК при ne = 0, 1, 10 (рисунки 22-24). 

 
Рисунок 22 – Оценки координаты подвижного объекта ББФК  

при значениях ne = 0, 1, 10 

 
Рисунок 23 – Расчетное с.к.о оценки координаты подвижного объекта ББФК  

при значениях ne = 0, 1, 10 
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Рисунок 24 – Расчетные с.к.о оценок координат 10 признаков  

при значениях ne = 0, 1, 10 

Как видно из рисунков 23-24, чем меньше значение, тем выше расчетные 

значения с.к.о «консервативного» варианта ББФК, что соответствует ожиданиям. 

2.7.1.3 Результаты тестирования консервативности и консистентности ББФК 

«Консервативный» вариант ББФК формирует расчетные значения с.к.о 

координат подвижного объекта и признаков строго большие начального с.к.о 0
xσ  

во всех рассмотренных сценариях моделирования, в том числе при ne = 0, что 

подтверждает консистентность фильтра в широком смысле. Консистентность 

ББФК-ВИНС в узком смысле, понимаемая как независимость оценок фильтра от 

неопределенности ненаблюдаемых оценок 0
xσ , соблюдается приближенно при 

выборе значения ne равным или превышающим размерность ненаблюдаемого 

подпространства nu (в данном случае nu = 1). Имеется только косвенное влияние 

значения 0
xσ  на оценки при малых значениях ne, объясняемое тем, что данное 

значение изменяет выбор базисных случайных величин, включаемых в расширение 

общего вектора состояния eX . 

«Оптимистичный» вариант ББФК, в котором не применяется техника 

завышения ковариации, показал неконсистентность и расходимость в рамках 

тестирования в предельном случае ne = 0. 

n
e
 =  0 n

e
 =  1 n

e
 =  10 
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2.7.2 Оценка затрат процессорного времени на одну итерацию фильтра 

Компромисс между скоростью работы и точностью ББФК достигается выбором 

размерности расширения общего вектора состояния ne. На рисунке 25 отражено 

влияние выбора ne на время вычислений ББФК. Данные получены для процессора 

AMD Ryzen 5 4600H, 3 GHz в однопоточном режиме. 

 

Рисунок 25 – Время вычислений ББФК в мс, при N = 300,  N = 1000 и различ. ne 

Как видно из рисунка 2, при ne = 0 время вычислений ББФК составило при 

N = 300 16 мс для этапа коррекции и 9 мс для этапа прогноза; при N = 1000  –  

55 мc для этапа коррекции и 28 мс для этапа прогноза. Варьирование значения ne 

от 0 до 100 влечет за собой увеличение времени вычислений на 40%, что не 

существенно в виду возможности эффективной параллелизации алгоритма.  Время 

вычислений стандартной квадратно-корневой реализации фильтра Калмана при 

N = 300 составило 230 мc для этапа коррекции и 90 мс для этапа прогноза;  при 

N = 1000  –  5100 мc для этапа коррекции и 2200 мс для этапа прогноза. Размерности 

векторов системы приняты: ns = 15, nw = 12, nXi = 3, nYi = 2.  

Для тестирования использовалась следующая квадратно-корневая реализация 

фильтра Калмана. 

2.7.2.1 Реализация квадратно-корневого фильтра Калмана, используемая для 

сравнения с ББФК 

Пусть ( )1..., , cov
T

T T T
s N

 = =
 

X X X X LL , а матрицы моделей динамики и 

измерений для X  восстановлены из соответствующих матриц блоков. Для 

сравнения с ББФК определялось время вычислений этапов прогноза и динамики 

следующей квадратно-корневой реализации  фильтра Калмана. 
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Этап прогноза ФК: 

( )
.

T

T

T
w

qr R
  
   
    

FL
L

M

 

Этап коррекции ФК: 

( )
.

0 0

TT T T
y xy

T T
v

qr R
   
    
        

L L HL L

L M
 

( )ˆ ,xy ymldivide X L L Y  

L L  

Стандартная matlab-функция x = mldivide (L, b) осуществляет решение системы 

L x b=  методом обратной подстановки, если L – треугольная матрица, а b – вектор. 

2.7.3 Сравнение оценок ББФК и ОФК при моделировании работы ВИНС 

В данном пункте на основе численного моделирования работы ВИНС 

проверяется, насколько хорошо оценки ББФК аппроксимируют оценки ОФК при 

варьировании размерности расширения общего вектора состояния ne. При проверке 

использовано то свойство алгоритма, что при выборе значения ne равным или 

большим суммарной размерности всех векторов состояния визуальных признаков, 

ББФК становится математически эквивалентным стандартному ОФК и может 

использоваться вместо него в ходе проверок (см. п. 2.5). Это позволяет избежать 

реализации отдельного алгоритма для работы с матрицами стандартного ОФК и 

упрощает обеспечение одинаковых условий моделирования. 

Моделируется движение подвижного объекта, оснащенного ВИНС, над сценой 

с контрастной текcтурой. Навигационная система содержит трехосевые 

акселерометр и датчик угловых скоростей, измерения которых обрабатываются 

согласно алгоритму корректируемой БИНС, и бортовую видеокамеру, 

направленную вертикально вниз в связанной с объектом системе координат. В 

качестве опорной СК принята посадочная система координат OXhYhZh, связанная с 

Землей (центр системы координат находится в месте посадки, ось OZh направлена 

по местной вертикали). 

В качестве визуальных признаков, определяемых на кадрах с бортовой 
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видеокамеры, используются опорные точки. Выделение новых точек производится 

детектором ORB [84], а для их дальнейшего отслеживания применяется KLT-

трекер [85], [86], [87], [88]. По мере выхода отслеживаемых точек из поля зрения в 

систему добавляются новые таким образом, чтобы их число не превышало 

заданное максимальное и не опускалось существенно ниже.  

Комплексирующий фильтр использует классическую модель ошибок БИНС с 

МЭМС-датчиками и модель ошибок расположения опорных точек, 

параметризованных декартовыми координатами в опорной СК. Начальные 

параметры расположения опорных точек рассчитываются при их первом 

появлении в кадре в предположении их принадлежности к поверхности сцены, 

карта высот которой известна с заданной дисперсией. 

Схема информационных связей в программе моделирования работы ВИНС 

приведена на рисунке 26. 

Формирование 

визуальной сцены

Оценки 

навигационных 

параметров

Формирование 

параметров 

движения

Формирование 

изображений

Модель 

инерциальных 

датчиков

Алгоритм работы

ВИНС

Изображения

Измерения 

датчиков

Визуальная сцена

Действительные 

параметры 

движения

 

Рисунок 26 – Схема информационных связей в программе моделирования  

работы ВИНС 

2.7.3.1 Описание математических моделей и параметров моделирования 

При моделировании используется классическая модель ошибок ВИНС,  

см. п. 2.1.  

Матрицы модели динамики ошибок в соответствии с обозначениями в (19): 

3 3 3 3 3 33 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3
3 3 3 3
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(58) 
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где Δt  – шаг по времени; hω , hn  – векторы угловой скорости и кажущегося 

ускорения в опорной СК; m gyrT , m accT  – время корреляции смещений нуля 

инерциальных датчиков; ,b gyr b accσ σ  – СКО входного шума формирующих 

фильтров для смещений нуля ДУС и акселерометра. 

Формирующие фильтры для смещений нуля инерциальных датчиков настроены 

на экспоненциально-коррелированный процесс: 

Δ Δ
2b m

m m

t t
σ σ

T T

 
= − 

 
, (59) 

где mσ  – СКО экспоненциально-коррелированного процесса. 

Измерения СТЗ представляют собой однородные координаты iq  проекции i-той 

опорной точки на плоскость изображения видеокамеры, чему соответствует 

нелинейная модель измерений (4). Сформируем матрицы модели ошибок 

измерений для векторов ошибок (8) в соответствии с обозначениями ББФК (14): 

ivM  = 2 2CVσ  I ,  2 9, , 0is φ i 
 = − H H H , T

i c hbπ=  CH . (60) 

где ( )
2

1 33

2
3 2 3

1 0
, , [ ]

10

c cc T T T i c T i
c bc с bc hb h h b φ c hb h h

c c c

π π
 −
  = = − − =  − 
 − 

l ll
C l C C r r d C r r

l l l
H . 

Начальный радиус-вектор расположения i-той опорной точки 
i

hr  

рассчитываются при ее первом появлении в кадре в предположении 

принадлежности к поверхности сцены на уровне высоты zi  (известно СКО карты 

высот – z0 ):  

 , ,
1

i
i h Z i c

hc h h
z

z
t t

− 
= = = +  

 

rq
l C r r l

l
, (61) 

где hсC  – матрица перехода из опорной СК в СК камеры. 

Линеаризовав (61) относительно ошибок используемых данных, получим 

следующую модель начальных ошибок радиус-вектора положения опорной точки: 

i CV i
h φ h r h z i vδz= + + +δr M δφ M δr M M v , (62) 

где введены обозначения: 
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(63) 

2.7.3.1.1 Параметры моделирования.   

1. Инерциальные датчики. Случайное блуждание угла ДУС 0.015 / cARW =  , 

экспоненциально-коррелированный шум ДУС с параметрами 0.05 / сm gyrσ =  , 

20 сm gyrT = . Случайное блуждание скорости акселерометра 0.03 м/с cVRW = , 

экспоненциально-коррелированный шум акселерометра с параметрами 

20.00015 м / сmaccσ = , 20 сmaccT = . 

2.  Техническое зрение. СКО шума однородных координат проекции опорной 

точки на плоскость кадра CVnoise = 0.003, СКО карты высот при инициализации 

опорной точки z0 = 0.1 м. Разрешение кадров: 1920×1080. Дисторсия кадров не 

моделируется. Максимальное число отслеживаемых точек Nmax = 300. 

3. Частота работы навигационной системы. Алгоритм БИНС функционирует с 

частотой 400 Гц, кадры с бортовой видеокамеры обрабатываются с частотой 20 Гц. 

4. Параметры траектории и движения. Спуск с высоты H0 = 20 м до высоты  

H1 = 2 м с максимальной скоростью 2 м/c, при воздействии случайных 

динамических возмущений. В верхнем и нижнем положениях – зависание над 

сценой. Движение продолжается 15 с. 

5. Начальные ошибки навигационных параметров. Ошибка по углу тангажа  

D 0= –0.1, ошибка по углу крена D 0 = 0.1. Ошибки остальных параметров 

нулевые. 
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Моделирование производится в среде Matlab, перемещение и смена ориентаций 

видеокамеры имитируется  управлением параметрами обзора 3d-графика (axes low-

level camera properties), согласованным с текущими параметрами движения.  На 3d-

графике размещена поверхность с контрастной текстурой (сцена). В процессе 

моделирования производится запись кадров с отмеченными активными опорными 

точками. Все запуски программы моделирования производятся с одинаковыми 

реализациями шумов измерений. 

2.7.3.2 Результаты моделирования 

На рисунке 27 приведены изображения сцены с отслеживаемыми опорными 

точками (показаны красным). Среднее число одновременно отслеживаемых точек 

составило 205. 

 

Рисунок 27 – Кадры сцены с отслеживаемыми опорными точками при 

моделировании спуска подвижного объекта 
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Как видно из рисунка 27, в процессе движения происходит значительное 

приближение к поверхности сцены. В качестве текстуры сцены выбрано 

изображение высокого разрешения, отличающееся наличием множества 

контрастных деталей разного масштаба. Это сделано с целью облегчения условий 

работы алгоритмов выделения и отслеживания опорных точек (вопросы, связанные 

с надежностью и точностью их работы здесь не рассматриваются). 

 На рисунке 27 представлены графики координат и скорости вертикального 

канала во время моделирования.  

 

Рисунок 28 – Координаты и скорость вертикального канала при моделировании 

спуска подвижного объекта  

Для того, чтобы дать наглядное представление о выбранных параметрах 

погрешностей инерциальных датчиков и начальных оценок навигационных 

параметров, произведено моделирование работы навигационной системы в режиме 

некорректируемой БИНС. Результаты оценивания в некорректируемом режиме 

приведены на рисунке 29 для координат, на рисунке 30 – для скоростей, на  

рисунке 31 – для углов ориентации. Для всех навигационных параметров, кроме 

координаты и скорости вертикального канала, на графиках приводятся их 

фактические значения – «ref» и оценки –  «dead reckoning estimate». В связи с тем, 

что расхождения между оценками параметров движения вертикального канала и их 

фактическими значениями плохо различимы в масштабе перемещений по данному 

Высота rz, м 

Скорость vz, м/c 

Время, с 
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каналу, для него построены графики ошибок оценок навигационных параметров – 

«dead reckoning error».   

 

Рисунок 29 – Оценивание координат в некорректируемом режиме 

 

Рисунок 30 – Оценивание скоростей в некорректируемом режиме 
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Рисунок 31 – Оценивание ориентации в некорректируемом режиме 

По данным рисунков 29 – 31, дрейф оценок координат за время моделирования 

составил 6.5 м, в основном обеспечен дрейфом по горизонтальным каналам; дрейф 

оценок скорости составил 1 м/c, оценок ориентации –  0.33. 

Результаты моделирования оценок визуально-инерциальной навигационной 

системы с коррекцией по опорным точкам приведены на рисунке 32 для координат, 

на рисунке 33 – для скоростей, на рисунке 34 – для углов ориентации. 

Моделирование произведено для различных значений en : 0, 1, 2, 3, 12, 900. Так как 

блочный фильтр Калмана при ( ) maxdim 3 300 900e in X N=  =  = математически 

эквивалентен стандартному ОФК,  оценки фильтра при 900en = рассматриваются 

как оценки стандартного ОФК и отмечены как «KF» (Kalman Filter). 

Так же как и для графиков с результатами оценивания в некорректируемом 

режиме, для координаты и скорости вертикального канала приведены ошибки 

оценок. 

Рыскание ,  

Тангаж ,  

Крен ,  
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Рисунок 32 – Оценивание координат с коррекцией по опорным точкам 

 

Рисунок 33 – Оценивание скорости с коррекцией по опорным точкам 
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Рисунок 34 – Оценивание ориентации с коррекцией по опорным точкам 

Дрейф оценок координат за время спуска составил 4.2 см. Дрейф по углу 

рыскания не проявился за время моделирования, по остальным навигационным 

параметрам дрейф также отсутствует, как и предполагалось (в связи с их 

наблюдаемостью). 

Рассмотрим различия между оценками, формируемыми комплексирующим 

фильтром при различных значениях en . Наибольшие различия наблюдаются между 

оценками координат (рис. 32), при этом оценки при 0en =  отличаются от оценок 

стандартного ОФК ( 900en = ) сильнее всего; оценки при 12en =  совпадают с 

оценками стандартного ОФК в выбранном масштабе графиков. 

Для численной оценки различия между оценками фильтра при различных 

значениях en  рассчитаем и сравним их среднеквадратические ошибки 

относительно фактических значений навигационных параметров refRMSE( , )
eny y  и 

относительно оценок стандартного ОФК KFRMSE( , )
eny y : 
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где L – число отсчетов в сигналах y1, y2.  

Значения среднеквадратических ошибок refRMSE( , )
eny y  приведены в таблице 

1, значения KFRMSE( , )
eny y  – в таблице 2. 

Таблица 1 – RMSE оценок относительно фактических значений 

                    ne 0 1 2 3 12 900 (KF) 

координаты, м 0.026 0.025 0.023 0.0226 0.0225 0.0225 

скорость, м/c 0.0092 0.00914 0.0092 0.00926 0.00927 0.00927 

ориентация,  0.083 0.0825 0.0877 0.085 0.0855 0.0855 

Таблица 2 – RMSE оценок относительно оценок стандартного ОФК 

                    ne 0 1 2 3 12 3* 

координаты, м 0.00696 0.00265 0.00105 0.00024 0.000003 0.000662 

скорость, м/c 0.00114 0.000802 0.000205 0.0000984 0.0000024 0.000358 

ориентация,  0.0156 0.0137 0.0118 0.0034 0.00003 0.008 

В таблице 2  (*) – результаты, полученные при использовании версии блочного 

фильтра Калмана, в котором метод главных компонент применен без нормировки 

векторов состояния признаков (см. п. 2.5.4). Как видно из сравнения столбцов (3) и 

(3*), отсутствие нормировки привело к увеличению в 2-3 раза RMSE оценок 

относительно оценок стандартного ОФК. С ростом числа en  влияние нормировки 

снижается. 

Рассчитаем по данным таблицы 2 безразмерные коэффициенты ( )y eq n  и ( )y ec n

, характеризующие оценки фильтра при выбранном значении en  с точки зрения их 

точности и близости к оценкам стандартного ОФК соответственно. 

( )
ref

KF ref

RMSE( , )

RMSE( , )

en

y e

y y
q n

y y
= ,     ( )

KF

KF ref

RMSE( , )

RMSE( , )

en

y e

y y
c n

y y
= , (65) 

где ( )y eq n  – нормированная среднеквадратическая ошибка оценки y при заданном 

значении en ;  

( )y eс n  – нормированное среднеквадратическое расхождение между оценкой  y 
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при заданном значении en  и оценкой y стандартного ОФК. 

На рисунке 35 приведены графики  нормированных среднеквадратических 

ошибок для оценок координат ( posq ), скорости ( velq ), ориентации ( attq ) в при 

заданных en . 

 
Рисунок 35 – Нормированные среднеквадратические ошибки оценок ББФК при 

заданных en  

Как видно из графиков на рисунке 35, среднеквадратическая ошибка оценок 

координат быстро убывает с ростом значения en : при 0en =  она на 18% превышает 

ошибку оценок координат стандартного ОФК, а уже при 3en =  –  менее чем на 1%. 

Ошибки оценок скорости и ориентации слабее зависят от en  и изменяются в 

пределах 5%, причем минимальное значение наблюдается  

при 1en = , что может объясняться случайным разбросом. 

На рисунке 36 приведены графики  нормированного среднеквадратического 

расхождения между оценками при заданных en  и оценками стандартного ОФК для 

координат ( posc ), скорости ( velc ), ориентации ( attc ). 

 
Рисунок 36 – Нормированное среднеквадратическое расхождение между оценками 

ББФК при заданных en  и оценками стандартного ОФК 
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Как видно из графиков на рисунке 36, расхождение между оценками блочного 

фильтра и оценками стандартного ОФК быстро убывают с ростом en  для всех 

навигационных параметров. При 12en =  расхождение для всех оценок составляет 

менее 0.05% от среднеквадратической ошибки оценок стандартного ОФК, что с 

практической точки зрения можно рассматривать как совпадение оценок. 

2.7.3.3 Обсуждение результатов  

Как было сказано выше, для данной ВИНС математическая эквивалентность 

ББФК и ОФК достигается при расширении вектора состояния на 900en =  

элементов; однако по результатам моделирования уже при  12en =  наблюдается 

расхождение между ББФК и ОФК менее 0.05%. Рассмотрим теоретические 

причины малого расхождения оценок уже при 900en  . Как указано в п. 2.3, сразу 

после инициализации новых признаков их ошибки скоррелированы только 

посредством ошибок БИНС (21а), и расхождения между оценками ОФК и ББФК 

нет. Аппроксимация ОФК при отслеживании признаков до первого их выхода из 

поля зрения не требует больших размерностей en , так как ошибки признаков имеют 

общую «предысторию», определяемую динамикой ошибок БИНС в ближайшем 

прошлом. В случае, если бы какой-либо визуальный признак был изолирован от 

остальных (например, надолго вышел из поля зрения, но не был удален из ВИНС), 

то корректный учет взаимных корреляций между ним и остальными признаками 

потребовал бы сохранения в общем векторе состояний дополнительной 

информации, описывающей ошибки БИНС на момент выхода этого признака из 

поля зрения. 

Рассмотрим вопросы, связанные со статистикой работы трекера опорных точек. 

В связи с быстрой сменой ракурсов при перемещении и повороте видеокамеры, 

большинство точек удается отследить лишь на сравнительно короткой 

последовательности кадров, что способствует распространенности оконных 

алгоритмов в визуально-инерциальной навигации. Например, в оригинальной 

версии MSCKF [23] максимальное число кадров, на котором отслеживается одна и 

та же опорная точка, ограничено 30-тью. 
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За время моделировании работы ВИНС общее число выделенных точек 

составило 988, среднее число одновременно активных точек, используемых для 

коррекции – 205, среднее время отслеживания точки составило 3.1 с, что 

соответствует 62 кадрам (частота съема кадров 20 Гц).  

На рисунке 37 представлен эмпирический закон распределения времени 

отслеживания опорных точек по данным, собранным за время моделирования. 

 

Рисунок 37 – Эмпирический закон распределения времени отслеживания опорных 

точек при моделировании 

Как показано на рисунке 37, время отслеживания опорных точек варьировалось 

в широких пределах. Несмотря на то, что среднее время отслеживания составило 

3.1 с, время отслеживания 30% точек превысило 5 с, 10% – 6 с, 5% – 8 с, что 

соответствует 100, 120 и 160 кадрам. Здесь проявляется отличие ББФК от 

фильтров, обрабатывающих измерения в окне фиксированной длины. В виду 

отсутствия жестких ограничений на время отслеживания, несколько точек 

отслеживались на протяжении всего времени моделирования (15 с), что 

соответствует 300 кадрам (см. гистограмму на рисунке 38). 

 

Рисунок 38 – Эмпирическая гистограмма распределения времени отслеживания  

опорных точек при моделировании 
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 Основные результаты и выводы по разделу 

1. Разработан алгоритм быстрого блочного фильтра Калмана (ББФК) для 

рекуррентного оценивания полного вектора параметров ВИНС, имеющий 

линейную вычислительную сложность от числа визуальных признаков, 

отличающийся от известных рекуррентных децентрализованных фильтров 

близостью формируемых оценок к оценкам обобщенного фильтра Калмана (ОФК), 

что обеспечивается применением метода главных компонент для аппроксимации 

корреляционных связей между оценками фильтра.  

2. Разработанный алгоритм ББФК, в отличии от оконных MSCKF-алгоритмов, 

для которых также характерна линейная сложность от числа признаков, не 

накладывает ограничений на длительность отслеживания признаков. Это позволяет 

наблюдать признаки в течении длительного времени, уточняя оценки их 

расположения и оценки навигационных параметров.  

3. В разработанном ББФК используется новый метод построения верхних 

границ для совместных матриц ковариаций оценок параметров ВИНС, 

учитывающий погрешность аппроксимации по методу главных компонент, 

позволяющий устранить недооценку расчетных значений их СКО и избежать 

снижения чувствительности фильтра к результатам. 

4. Тестирование ББФК в рамках численного моделирования работы ВИНС с 

KLT-трекером, отслеживающим сотни опорных точек (N = 200…300), 

подтвердило, что величина относительного отклонения оценок ББФК от оценок 

ОФК не велика и настраивается выбором числа удерживаемых главных компонент 

ne. В рассмотренных условиях моделирования показаны относительные 

отклонения менее 0.05% при ne = 12.  

5. При тестировании показано, что использование ББФК вместо ОФК позволяет 

достичь существенного сокращения времени вычислений. Сравнение времени 

вычислений фильтров произведено при числе отслеживаемых визуальных 

признаков N = 300, N = 1000. В рассмотренных условиях зафиксировано 



90 

 

сокращение времени вычислений в 11 и 85 раз соответственно (при ne = 12). 

Дальнейшее увеличение значения ne до ne = 100 ведет к ограниченному росту 

вычислительной сложности – на 40%. Возможность наращивания значения ne без 

резкого роста времени вычислений создает потенциал применения ББФК в 

условиях более сложных моделей ошибок ВИНС: с динамикой ошибок 

расположения признаков и большей размерностью векторов ошибок признаков. 
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3 РАЗРАБОТКА МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ ВИЗУАЛЬНО-

ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ И ЕЕ ПРОГРАММНАЯ 

РЕАЛИЗАЦИЯ 

Математические модели ошибок ВИНС, разрабатываемые в данном разделе, 

используются в ББФК для расчета параметров ковариации ошибок навигационных 

оценок и выработки корректирующих поправок к ним [89]. Рассматриваемые 

модели сформулированы относительно право-инвариантных ошибок 

навигационных параметров,  что позволяет добиться уменьшения влияния ошибок 

текущих оценок ВИНС на точность численных значений параметров моделей, и 

следовательно, на точность расчетных параметров ковариации ошибок оценок 

фильтра.  

Модели ошибок предназначены для ВИНС с монокулярной камерой, 

использующей два типа визуальных признаков: опорные точки и опорные маркеры 

типа Aruco [11]. При начальном оценивании пространственного положения 

опорной точки по ее проекции на плоскость изображения удается установить лишь 

ее принадлежность некоторому лучу, расстояние до точки вдоль луча остается 

неопределенным. Поэтому для вновь обнаруживаемых опорных точек 

используется параметризация обратной глубины, а не параметризация 

декартовыми координатами.  

В отличие от опорных точек, опорные маркеры предварительно 

каталогизированы: определены их размер, положение, неопределенность значений 

положения. В ВИНС предусматривается возможность начальной выставки по 

опорному маркеру с использованием алгоритма point-3-point (P3P) [90], 

разрабатывается соответствующая модель ошибок. Также описываются структура 

и режимы работы программного обеспечения, реализующего ВИНС. 

Отслеживание опорных маркеров, имеющих привязку в опорной СК, 

обеспечивает коррекцию всех навигационных параметров.  Отслеживание опорных 

точек позволяет корректировать оценки скорости, углов крена и тангажа, 

смещений нуля инерциальных датчиков. Это позволяет замедлить накопление 

ошибок оценок позиционных координат и угла рыскания в опорной СК по 

сравнению с некорректируемой БИНС, что делает опорные точки критически 
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важным источником информации на участках траектории без обзора маркеров. 

 Разработка консистентных математических моделей ошибок ВИНС 

3.1.1 Использование право-инвариантных ошибок 

Существует два варианта реализации инвариантного ОФК, при выполнении 

ряда условий приводящих к эквивалентным оценкам: с использованием лево- или 

право-инвариантных ошибок [56]. Право-инвариантная формулировка приводит к 

более простым моделям измерений в связанной системе координат, чем лево-

инвариантная [27], [55], поэтому именно она используется далее. 

В ВИНС оценивание положения подвижного объекта в опорной системе 

координат hr  осуществляется с использованием измерений БИНС и СТЗ в 

связанных с подвижным объектом осях, что приводит к нелинейной зависимости 

между ошибками положения и ориентации в векторе ошибок (8). В ОФК-ВИНС с 

классической формулировкой модели ошибок, где линеаризация производится 

относительно этих ошибок, зависимость между ними описывается некорректно, 

что приводит к неконсистентности. 

Рассмотрим упрощенный пример, поясняющий снижение влияния ошибок 

навигационных оценок на численные значения параметров математических 

моделей при использовании право-инвариантных ошибок. Пусть имеется 

измеренное значение радиус-вектора подвижного объекта в связанной системе 

координат z  и его прогнозируемое на основе инерциальных оценок положения и 

ориентации значение ẑ : 

,T z
hb h= +C rz ν      ˆ ˆˆ ,T

hb h= C rz  (66) 

где ˆ,hb hbC C  – матрица перехода из опорной СК в ССК и ее инерциальная оценка; 

ˆ,h hr r  – радиус-вектор центра ССК в опорной СК и его инерциальная оценка; 

z
ν  – шум измерений. 

Инерциальные оценки положения и ориентации связаны с их действительными 

значениями  следующим образом: 

ˆ Δh h h= +r r r , (67) 
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ˆ
hb hb hbδ=C C C , (68) 

где Δ hr  – линейная ошибка оценки радиус-вектора центра ССК в опорной СК; 

( )(3)expSO
hb hδ δ=C φ  – правосторонняя ошибка оценки матрицы перехода из 

опорной СК в ССК. 

Экспоненциальное отображение ( )(3)expSO
φ  вектора конечного поворота   в 

матрицу поворота определяется как: 

( )
( )

( )
( )

( )(3) 2
3 3 2

sin 1 cos
expSO S S

−
= + +

φ φ
φ I φ φ

φ φ
, (69) 

( )
0

0
0

z y

z x

y x

φ φ
S φ φ

φ φ

− 
 = −
 − 

φ  – кососимметрическая матрица векторного умножения. 

Запишем выражение для невязки между измерением и прогнозом для  

модели (66): 

( )ˆ ˆˆ ˆˆ T T z z T
hb h hb h hb h hb hδ− = − + = − −C r C r C r C rY = z z ν ν . (70) 

С учетом линейных членов разложения ( )(3)expSO
φ  в окрестности нуля  

( ) ( ) ( )(3)
3 3expSO S o= + +φ I φ φ ,  (71) 

получим по (70) линеаризованную относительно hδφ , Δ hr  модель ошибок 

измерений: 

( )( ) ( )( )

( )( ) ( )

3 3
ˆ ˆˆ ˆ

ˆ ˆ ˆˆ Δ

Δ ,

z T z T
hb h h h hb h h h h

z T z T T
hb h h h h hb h hb h h

z
r h φ h

S δ S δ

S δ S δ

δ

  − − + = − − − = 

 = − − + = −  −  =
 

= −  − 

C r I φ r C r r φ r

C r r r φ C r C r φ

r φ

Y ν ν

ν ν

ν H H

 (72) 

где ˆ T
r hb= CH , ( )ˆ T

φ hb hS= C rH  – матрицы измерения для ошибок положения и 

ориентации соответственно. 

Как видно из (72), в определении φH  фигурирует действительное значение 

радиус-вектора центра ССК hr , которое не известно. На практике hr  приходится 

заменять на его оценку ĥr , что приводит к неточности математической модели. 

φ
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Использование в комплексирующем фильтре матрицы ( )ˆˆ ˆT
φ hb hS= C rH , 

изменяющейся случайным образом от измерения к измерению, является основной 

причиной неконсистентности модели ВИНС, поскольку приводит к ложной полной 

наблюдаемости ошибки угла рыскания [33], [55]. 

Решением обозначенной проблемы является замена линейной ошибки оценки 

положения Δ hr  на право-инвариантную ошибку положения hδr  [33]: 

ˆ
h h hb hδ δ= −r r C r . (73) 

Инвариантная ошибка положения (73) является более естественным 

параметром модели ошибок навигационной системы, чем линейная ошибка  

ˆΔ h h h= −r r r , что обусловлено групповой структурой множества всех возможных 

перемещений и поворотов твердого тела. Элементы данной группы, называемой 

группой специальных евклидовых преобразований SE(3), удобно записывать в виде 

блочных матриц перехода 44 : 

3

1 3

, (3), (3), .
0 1

hb h
hb hb hb h

C r
T T SE C SO r



 
=    

 
  (74) 

Право-инвариантная ошибка оценки матрицы перехода ˆ (3)T SE  определяется 

следующим образом: 

T T
1

1 31 3

ˆ , (3),
0

ˆ

0

ˆˆ

11

hb hR Rhb hb h hb hb h
hb hb

δC δrC C r C C r
η T T η SE−



   −
= = =     

  
 (75) 

где 
1 3

ˆ ˆˆ
0 1

hb h
hb

C r
T



 
=   

 
. 

Правая инвариантность ошибки Rη  заключается в ее нечувствительности к 

переходу между связанными с объектом системами координат. Такой переход 

выражается умножением справа на матрицу преобразования G  (3)SE : 

11ˆ ˆ ˆ( , ) ( ) , (3).R R
hb hb hb hb hbη T G T G T G TG T T η SEG−−= = =    (76) 

Благодаря этому свойству линеаризованные относительно право-инвариантной 

ошибки модели наблюдений и динамики становятся менее зависимы от ошибок 

оценок ориентации, что повышает консистентность фильтра Калмана [33]. 
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Как видно из (74), именно hδr , а не Δ hr , является компонентом Rη . Возвращаясь 

к выражению для невязки между измерением и прогнозом (70), отметим, что право-

инвариантная ошибка положения hδr  входит в него в качестве линейного члена: 

( )ˆ ˆˆz T z T z
hb h hb h hb h r hδ δ δ− − = − = −C r C r C r rY = ν ν ν H . (77) 

В отличие от модели (72), в модели (77), использующей право-инвариантную 

ошибку, отсутствует линейный по hδφ  член, поэтому матрица 3 30φ =H  известна 

без погрешности. 

В вектор ошибок фильтра право-инвариантная ошибка включается посредством 

6-мерного векторного представления ξ  в касательном пространстве se(3). 

Касательное пространство связано с группой экспоненциальным преобразованием:  

( ) ( )
1

(3)(3) , , (3)log

T

SE
T

ξR T SO
h h hl

ξ

δ
η δ J δ δ

δ

−  
= =

     


= 
    

ξ r ξ
φ

φ φ
r

se , (78) 

( )
( ) ( )(3) (3)

(3)

3 1

exp
exp

0 1

SO SO
lSE Rξ ξ ξδ J δ δ

η



 
= = 

 
 

φ φ r
ξ . (79) 

где ( )(3) .SO
lJ  – левый якобиан SO(3): 

( ) ( )

( )

(3) (3)

(3) 2
3 2 2

,

1 cos(|| ||) || || sin(|| ||)
( ) ( ).

|| || || ||

SO SO
rl

SO
r

J J

J I S S

= −

− −
= − +

φ φ

φ φ φ
φ φ φ

φ φ

. (80) 

Так как ξ hδ δ=φ φ , и (|| ( ) ||)ξ h h h hδ δ o S δ δ δ= + r r φ r r , линеаризованные модели 

для компонентов ξ  и 
Rη  совпадают. 

Линейные модели ошибок с гауссовской аппроксимацией плотности 

вероятности формулируются именно в se(3) – в векторном пространстве, где они 

корректны с точки зрения геометрии. 

Аналогично рассмотренному примеру (66), применение право-инвариантных 

ошибок в моделях измерений ВИНС, рассматриваемых далее, способствует 

уменьшению погрешностей линеаризации преобразования координат при 

поворотах, и достижению консистентности. Однако в моделях измерений ВИНС 
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имеется и погрешность линеаризации другого рода, связанная с проективными 

отображениями визуальных признаков на плоскость изображения камеры. 

3.1.2 Выбор компонентов вектора ошибок  

Группа SE(3) может быть расширена за счет рассмотрения дополнительных 

векторов в опорной СК, таких как вектор скорости подвижного объекта, радиус-

векторы положения визуальных признаков. На дополнительные вектора 

распространяются все те же правила преобразования, что и на 
hr . Введем 

обозначения: 

1 1

( ) ( )
, ,

h h
ξ h ξ h ξ hl δ l δ

δ δ δ J δ δ J δ− −= = =
φ φ

φ φ r r v v , (81) 

где ( )3logSO

h hbδ δ=φ C  – вектор ошибки оценки ориентации ССК в опорной СК; 

ˆ
h h hb hδ δ= −r r C r  – вектор право-инвариантной ошибки оценки положения 

центра ССК в опорной СК; 

ˆ
h h hb hδ δ= −v v C v  – вектор право-инвариантной ошибки оценки скорости центра 

ССК в опорной СК. 

Определим последовательность размещения компонентов в векторе ошибок 

навигационной системы.  

Вектор ошибок БИНС 
sX  включает в себя ошибки оценок ориентации, 

положения и скорости подвижного объекта, смещения нуля инерциальных 

датчиков, ошибку синхронизации данных БИНС и СТЗ: 

16 1 3 1 3 1 3 1 3 1 3 1 1 1 ,
T

T T T T T

s ξ ξ ξ gyr accδ δ δ δτ      
 =  φ r v b bX  (82) 

где gyrb  – вектор ошибки оценки смещения нуля ДУС; 

accb  – вектор ошибки оценки смещения нуля акселерометра; 

δτ – ошибка синхронизации данных БИНС и СТЗ, используемых 

комплексирующим фильтром ВИНС. 

Здесь и далее принято, что ось OZh опорной системы координат направлена по 

местной вертикали в точке расположения ее центра. 

Ошибка синхронизации  введена для использования в программно-δτ
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аппаратных реализациях ВИНС, в которых выравнивание данных БИНС и СТЗ по 

времени производится не точно. Для учета δτ  в моделях ошибок измерений 

достаточно произвести в них замену: 

 ( )h h h h hδ δ S δτ→ + −r r v ω r ,     h h hδ δ δτ→ +φ φ ω , (83) 

где hv  – вектор скорости центра ССК в опорной СК; 

hω  – вектор угловой скорости ССК в опорной СК, 

позволяющую описать перемещение и поворот объекта за время δτ в приближении 

равномерности поступательного и вращательного движения [3], [78]. 

Рассмотрим вид оператора ретракции для ВИНС с право-инвариантными 

ошибками в наиболее простом случае, когда в качестве визуальных признаков 

выступают N опорных точек, параметризованные радиус-векторами i

hr  в опорной 

системе координат. Вектор ошибок i-той опорной точки имеет вид: 

1

3 1 ( )h

i i

i ξ hl δ
δ J δ−

 = =
φ

r rX  (84) 

где ˆi i i

h h hb hδ δ= −r r C r  – вектор право-инвариантной ошибки оценки положения i-той 

опорной точки в опорной системе координат. 

( ) ( ) ( ) ( )

( ) ( )

(3)

1 1

( )

( ) cos(|| || 2),sin(|| || 2) || || , ( ) exp ( ),

ˆ

, ( ) ( ) , ( ) ( ) , ,

, , ( ) ( ) ,..., (

ξ

T
T SO

TT TT

hb ξ h l ξ ξ h l ξ ξ gyr gyr

TT

acc acc ξ h l ξ ξ

δφδ

δ δφ δ δ δ δ δC δφ δφ

δC δφ J δφ δ δC δφ J δφ δ δ

δ τ δτ δC δφ J δφ δ δC δ

  = 

= 

=  +   +  +


+ +  + 

q φ φ φ φ

q q r r v v b b

b b r r

=

x x X =

( )) ( ) .
T

T
N N

ξ h l ξ ξφ J δφ δ  + 


r r

 (85) 

3.1.3 Разработка моделей измерений с использованием опорных точек для право-

инвариантных ошибок ВИНС 

3.1.3.1 Модель измерений с использованием опорных точек в декартовых 

координатах 

Будем применять декартовую параметризацию для опорных точек, надёжно 

локализованных по наблюдениям из разных положений. Адаптируем для 

использования в рамках ББФК модель из работы [27], использованную в рамках 
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MSCKF-ВИНС с право-инвариантными ошибками.  

Модель измерений СТЗ 
CV
iq с использованием опорных точек имеет вид (4). 

Прогнозируемое на основе текущих оценок ВИНС значение однородных 

координат i-той опорной точки iq  записывается следующим образом: 

( )( )ˆˆ ˆ ˆ , ,T i c
i c hb h h bπ= − −q C r r d  (86) 

Рассмотрим выражение для невязки между измерением и прогнозом 

ˆCV
i i i−q qY =  после линеаризации внешней функции ( )c bπ l  в окрестности значения 

аргумента ( )ˆ ˆ ˆ ˆ ,T i c
b hb h h b= − −l C r r d : 

( ) ( )

( ) ( )

( ) ( )

ˆ ˆ ˆ, ,

ˆ ˆ ˆ, ,

ˆ ˆˆ ˆ ,

T i T i CV
i c hb h h hb h h i

T i i CV
c hb h h h h ihb

CV T i i CV T i
i c hb h h h h i c hb h hhb hb

π

π δ

π δ δ π δ δ

    − − − + =
 

 =  − − − + =
 

 = −  − − − = −  −
 

C r r C r r

C C r r r r

C r C r r C r C r r

Y ν

ν

ν ν

 (87) 

где 

2
1 33

2
3 2 3

ˆ ˆˆ 01

ˆˆ ˆ ˆ10

c cc Tc
c bc

b cb c c

π
π

 − 
  = = 

   −   

l ll
C

l ll l l
; 

ˆ ˆT
c bc b=l C l . 

Запишем матрицы-параметры линеаризованной модели измерений опорных 

точек в декартовых координатах с право-инвариантными ошибками в 

окончательном виде, используя параметры модели измерений ББФК (14): 

ivM  = 2 2CVσ  I ,  2 3 2 90 , , 0 ,is i τ = −H H H , ˆ T
i c hbπ= H C , (88) 

где ( )( )τ i h h hS= −  −v ω rH H . 

3.1.3.2 Модель измерений опорных точек с параметризацией обратной глубины  

В рамках данной модели в качестве параметров положения опорной точки 

используются координаты оптического центра камеры в момент первого 

наблюдения точки, параметры направления луча зрения, под которым обнаружена 

точка, а также обратная величина расстояния до точки вдоль этого луча  = 1 / r, 

называемая обратной глубиной. При этом при положение проекции точки на 

плоскость изображения в момент ее первого наблюдения не содержит информацию 
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о значениях  и r, для ее получения необходим обзор этой же точки из других 

положений. Преимущество использования обратной глубины  по сравнению с 

расстоянием вдоль луча r состоит в том, что неопределенность значения  проще 

аппроксимировать гауссовым распределением с заданным математическим 

ожиданием и дисперсией [38]. Так, бесконечный полуинтервал значений 

расстояния  )1,r  +  соответствует конечному полуинтервалу значений обратной 

глубины ( 0,1ρ . Для ВИНС с монокулярной камерой это позволяет реализовать 

полностью рекуррентное оценивание, без необходимости предварительного 

накопления данных обзора опорной точки из разных положений. 

При параметризации обратной глубины радиус-вектор положения i-той 

опорной точки в опорной СК выражается как: 

1с ii i
h hh iρ

= +r r m ,      (89) 

где с i
hr  – радиус-вектор центра СК камеры в момент первого наблюдения  i-той 

опорной точки; 
i
hm  – вектор направления на i-тую опорную точку в момент ее первого 

наблюдения; 
iρ  – обратная глубина положения i-той опорной точки вдоль луча, исходящего 

из точки с i
hr  вдоль i

hm . 

Модель измерений СТЗ с использованием точек с параметризацией обратной 

глубины записывается следующим образом: 

( )( ), ,с ii T c T i CV
i c hb h b hb h ihπ ρ  = − − + +

 
q C r r d C m ν  (4а) 

где iq  – однородные координаты проекции i-той опорной точки на плоскость 

изображения видеокамеры. 

Получим модель ошибок измерений по опорным точкам, позволяющую 

применить параметризацию обратной глубины [38] в ВИНС с право-инвариантной 

моделью ошибок. 

Будем рассматривать вектор ошибок i-той опорной точки с параметризацией 

обратной глубины следующего вида: 

7 1 3 1 3 1 1 1, ,
T

c i T i T i

i ξ hδ δ δρ   
 =  r mX , (90) 
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где 1

( )h

с i с i

ξ hl δ
δ J δ−=

φ
r r ; 

ˆc i c i c i

h h hb hδ δ= −r r C r  – вектор (право-инвариантной) ошибки оценки с i
hr ; 

ˆc i c i c i

h h hb hδ δ= −m m C m  – вектор (право-инвариантной) ошибки оценки с i
hm ; 

iδρ  – ошибка оценки обратной глубины iρ . 

Данный выбор 7-мерного вектора ошибок отличается от стандартного для точек 

с параметризацией обратной глубины 6-мерного вектора [38] тем, что включает в 

себя инвариантные ошибки оценок векторов с i
hr , i

hm . 

Аналогично (82-83), получим линеаризованное выражение для невязки между 

измерением и прогнозом ˆ
i i i−q qY = : 

( )( ) ( )( )
( ) ( ) ( )

( )

ˆ ˆˆ ˆ ˆˆ, ,

ˆ ˆˆ ˆ ˆˆ , ,

ˆ ˆˆ

с i с ii T c T i i T c T i CV
i c hb h b hb h hb h b hb h ih h

с i с iT i T i i
c hb h h c hb h hhb h h hb

с i сT c i CV CV T i
c hb h b i i c hbh h

π ρ ρ

π ρ δ π δ

π δρ π ρ δ

       − − + − − − + + =
     

 =  − − − +  − −
 

 −  − − = − 
 

C r r d C m C r r d C m

C C r r r r C C m m

C r r d C r

Y ν

+ ν ν ( )

( ) ( )ˆ ˆˆˆ ,

i i
h h

с i с iT c i CV T i i i
c hb h b i c hb h h c ρh h

δ δ

π δρ π ρ δ δ δ π δρ

 − + −
 

   −  − −  −  − + − 
   

r m

C r r d C r r m lν

 (91) 

где 

2
1 33

2
3 2 3

ˆ ˆˆ 01

ˆˆ ˆ ˆ10

c cc Tc
c bc

b cb c c

π
π

 − 
  = = 

   −   

l ll
C

l ll l l
; 

( )( )ˆ ˆ ˆˆ ˆ ˆˆ ,с iT i T c T i
c bc hb h b hb hhρ  = − − +

 
l C C r r d C m ; 

( )ˆ ˆ ˆ ˆс iT c
ρ hb h bh

 = − −
 

l C r r d . 

Запишем матрицы-параметры линеаризованной модели измерений, используя 

параметры модели измерений ББФК (14): 

ivM  = 2 2CVσ  I ,  2 3 2 9ˆ0 , , 0 ,i
is im τρ 

 = −
 

H H H , ˆˆ , ,i
i im im c ρρ π = 

 
lH H H  (92) 

где ˆ T
im c hbπ= H C , ( )ˆ ( )i

τ im h h hρ S= −  −v ω rH H . 

3.1.3.3 Начальное оценивание положения опорных точек с параметризацией 

обратной глубины  

Исходной информацией для начального оценивания положения i-той опорной 

точки с параметризацией обратной глубины служат: однородные координаты ее 

проекции на плоскость изображения камеры  iq ; СКО шума однородных координат 
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CVσ , ожидаемое значение обратной глубины 0ρ , СКО значения 0ρσ . 

Выберем значение 0ρ  исходя из ожидаемого минимального расстояния до 

опорных точек. Значение 0ρσ  выберем в несколько раз превышающим 0ρ , чтобы 

обеспечить параметрическую устойчивость, как это предложено в [38].  Отметим, 

что в приложении к задаче посадки в качестве 0ρ  имеется  возможность 

использовать обратное значение оценки высоты по данным высотомера. 

Начальные оценки параметров, определяющих положение точки в соответствии 

с выражением (89), рассчитываются следующим образом: 

i hc c
h

c

=
C m

m
m

, 0,c i i
h hbh

c
b ρ ρ= + =r dr C ,  (93) 

где 
1

i
c

 
=  

 

q
m . 

В рамках нашей модели ошибок (90) неопределенность начального положения 

опорной точки описывается следующими значениями параметров ковариации 
0
iL ,

0
isM :  

3 3 3 3 3 3
0

3 3 3 3

1 3 1 3 0

0 0 0

0 0

0 0

i m

ρσ

  

 

 

 
 

=  
 
 

L L ,    
3 3 3 3 100

3 3 3 3 3 10

0 0

0 0 0
is

I 

  

 
=  

 
M  .  (94) 

где 3
CV

m
c

σ
= I

m
L . 

Параметры ковариации (94) приведены в обозначениях из выражения (21б), 

получены линеаризацией (93) по ошибкам исходных данных: CVσ , 0ρ , 0ρσ , hδr . 

3.1.3.4 Конвертация опорных точек с параметризацией обратной глубины в точки 

в декартовых координатах 

Если в процессе перемещения камеры опорная точка обозревается из различных 

положений, неопределенность значения ее обратной глубины сокращается. В этом 

случае возможно снизить вычислительную нагрузку, конвертировав параметры 

обратной глубины в декартовые. 

В качестве условия конвертации предлагается следующее выражение: 

min conv conv, ,ρρ ρ ρ k σ    (95) 

где min convρ  – нижнее пороговое значение обратной глубины при конверсии 
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convk  – минимальное отношение значения обратной глубины к своему 

расчетному с.к.о. 

Условие (93) предотвращает конвертацию точек, удаленных на слишком 

большое расстояние, а также точек, чья неопределенность расположения вдоль 

луча зрения слишком велика по отношению к оценке расстояния до точки. 

Преобразования оценок параметров расположения для опорной точки в ходе 

конвертации: 

(idp)
(dec) (idp)

(idp)

i
i c i h
h h iρ

= +r
m

r . (96) 

Преобразование параметров ковариации производится в соответствии с 

линеаризованной зависимостью (96): 

(dec) (idp) (dec) (idp) (dec) (idp), ,i i ic ic id id= = =A A AL L M M M M , (97) 

где 
( ) ( )

(idp)
3 3 2(idp) (idp)

1 1
, , i

hi iρ ρ

 
 

= −
 
  

mA I I . 

3.1.3.5 Выводы по пункту  

Разработаны совместимые с ББФК модели измерений по опорным точкам для 

право-инвариантных ошибок ВИНС. Использование право-инвариантной 

формулировки модели ошибок улучшает консистентость фильтра.  

Для описания положения опорных точек используются два варианта 

параметризации: параметризация декартовыми координатами (3 параметра); 

параметризация обратной глубины (7 параметров). Применение параметризации 

обратной глубины для новых опорных точек дает возможность использовать их для 

коррекции параметров ВИНС сразу после обнаружения, не дожидаясь повторного 

обзора из различных положений.  

Благодаря линейной вычислительной сложности ББФК использование 7-мерных 

векторов состояния вместо 3-х мерных приводит к росту вычислительной сложности 

ББФК только в 2.3 раза по сравнению с ростом в 12.7 раз для стандартного ОФК. Для 

дальнейшего снижения вычислительной сложности реализована конвертация 

параметров точек в декартовые после снижения их начальной неопределенности.  
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Выделение и отслеживание опорных точек позволяет замедлить накопление 

ошибок оценок абсолютного местоположения и курса в опорной СК, но не 

позволяют «сбросить» накопленные ошибки, для чего требуются ориентиры с 

привязкой в опорной СК. Рассмотрим применение опорных маркеров в качестве 

таких ориентиров. 

3.1.4 Разработка модели измерений с использованием опорных маркеров для 

право-инвариантных ошибок ВИНС 

СТЗ производит распознавание опорного маркера, идентифицирует его ID и 

определяет однородные координаты 
i CVq , 1 4i   проекций его 4-х угловых точек 

на плоскость изображения  (рисунок 39). 

 

Рисунок 39 – Однородные координаты угловых точек маркера 

Если длина стороны маркера известна, то в отличие от опорных точек, его 

положение и ориентация относительно монокулярной видеокамеры могут быть 

оценены по единственному изображению путем решения задачи  

проективной геометрии, известной как perspective-n-point, в частности, perspective-

3-point (P3P) [90]. 

3.1.4.1 Описание алгоритма perspective-3-point 

P3P-оценка матрицы перехода 
3ˆ (3)P P

cmT SE , описывающей положение и 

ориентацию маркера относительно камеры, находится из условия совпадения 

расчетных и измеренных проекций его трех угловых точек 
1
cr , 

2
cr , 

3
cr : 
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 ( )3

1:3,1:4
ˆ ,1 , 1..3

T
i CV P P i T

mcm
π T i =  = q r , (98) 

где  1 2 3( ) ,
T

π =l l l l – функция проецирования вектора l  на плоскость z = 1. 

При этом четвертая точка 
4

cr привлекается в качестве контрольной – для нее 

рассчитывается ошибка перепроектирования:  

 ( )4 3 4 4

1:3,1:4
ˆ ,1

T
P P T CV

mcm
δ π T  =  − q r q . (99) 

Рисунок 40 иллюстрирует задачу P3P. 

 

Рисунок 40 – Задача perspective-3-point 

Существует большое количество алгоритмов P3P, использующих различную 

параметризацию проективных уравнений. В пакетах Matlab и OpenCV реализованы 

варианты алгоритма, описанного в [90]; он же используется в данной работе. В 

рамках данного алгоритма на основе решения алгебраического уравнения 4-ой 

степени определяются координаты 3-х точек в связанной с камерой СК, и затем по 

ним вычисляются радиус-вектор положения и матрица ориентации объекта-

ориентира в СК камеры.  

Уравнение 4-ой степени имеет до четырех решений, поэтому заданной тройке 

проекций на плоскости изображения может соответствовать несколько различных 

решений для расположения точек в пространстве. Выделение одного решения 

производится по критерию минимальности 
4δq . Такая процедура повторяется для 

каждой тройки проекций, с выявлением наилучшего по данному критерию 

решения. 

Плоскость 

изображения 

 

 

a 

b c 
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 
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3.1.4.2 Разработка право-инвариантной модели ошибок алгоритма perspective-3-

point 

В разрабатываемой ВИНС алгоритм P3P используется для начального 

оценивании положения и ориентации:  

а) подвижного объекта, при выставке ВИНС по «стартовому» опорному 

маркеру, имеющему привязку в опорной СК с заданной неопределенностью 

положения и ориентации;  

б) вновь обнаруженных маркеров с заранее неизвестным положением. 

Недостатком существующих реализаций P3P является то, что они не 

предоставляют характеристики погрешности полученных с их помощью оценок 

параметров взаимного расположения, в то время как эта информация нужна для 

настройки фильтра Калмана. 

Модель погрешности оценок параметров взаимного расположения камеры и 

маркера была рассмотрена в работе [91], но для отличающегося алгоритма, 

использующего дополнительную информацию о принадлежности маркера 

заданной плоскости. В статье [92] приведены данные экспериментальной оценки 

ошибки определения положения маркера при помощи P3P, но не получена 

математическая модель ошибок. 

Введем право-инвариантную ошибку P3P-оценок: 

 ( )13 (3) 3ˆlog , CVCV

T
P P SE P P T T

cm cm ξξ
T T δ δ

−  = =
 

ξ φ r .  (100) 

Линеаризовав (98) относительно 
3P P

ξ  и шума измерений СТЗ 
CVν  в 

предположении малости этих величин, получим следующее выражение: 

 
3

1 2 3, , ,
T

CV P P T T T =  =
 

v ξA A А А А ,    
1 2 3, ,

T
CV CV T CV T CV T =

 
v v v v , (101) 

где ( ) 3
ˆ ,i i

i cπ S I =  −
 

rА ; 

( )

( )

2

1 3
3

2
3

2 3

ˆ ˆ0ˆ1

ˆ1ˆ 0 ˆ ˆ

i
i

c c
ci

ii
i icc
c c

π
π

 
−   

 = =     =   −
 

r rr

l rl r
r r

; 

( )6~ 0,CV CVσν IN . 

В (101) 
CV
ν  выражен через 

3P P
ξ , обратная зависимость может использоваться 
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в качестве линеаризованной модели ошибок P3P-оценок: 

3 1P P CV−= ξ vA . (102) 

Недостаток линеаризованной модели ошибок (102) состоит в том, что при 

некоторых взаимных расположениях маркера и камеры матрица А плохо 

обусловлена, в том числе может вырождаться. Пример такого взаимного 

расположения маркера и камеры приведен на рисунке  41, б. 

На рисунке 41 цифрами 1-4 отмечены угловые точки маркера. Центр связанной 

с маркером системы координат примем расположенным в угловой точке 1.  

а)  б)  

Рисунок 41 – Примеры расположения камеры и маркера, м. : 

а) произвольное положение; б) положение с вырождением матрицы А 

В целом, A вырождается при всех расположениях, когда оптическая ось 

проходит перпендикулярно плоскости маркера через одну из его угловых точек. 

Рассчитаем A для взаимного расположения маркера и камеры, указанного на 

рисунке 41, б при выборе 4-ой точки в качестве контрольной, и проверим ее ранг: 

( )

0 1 0 1 0 0

1 0 0 0 1 0

0 2 0 1 0 1
,

1 0 1 0 1 0

1 2 1 1 0

5

1

ra

1

2 1

nk

1 0 1

 
 −
 −
 =

− 
− − − 

 − − 

=AA . (103) 

Ранг A (матрицы 6-го порядка) равен 5, что свидетельствует о ее 

вырожденности.  

Хотя на практике вырождение A маловероятно, в положениях с плохой 

Видеокамера 

1 

2 

3 

4 

1 

2 

3 

4 
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обусловленностью (102) приводит к завышению расчетной матрицы ковариации: 

( )3

2
1

P P
T CVP σ− −= 

ξ
A A .  (102) 

Как было сказано выше, алгоритм P3P формирует оценку по трем точкам, 

используя четвертую в качестве контрольной. Линеаризованная модель (102) не 

учитывает влияние отбраковки «неудачных» решений на СКО ошибок. Получим 

на основе (101) скорректированную модель ошибок, учитывающую фактическое 

значение ошибки перепроектирования контрольной точки.  

Рассмотрим сингулярное разложение матрицы A: 

T=A UΣV , (104) 

где U , V  – ортогональные матрицы; 

( )1 6diag ,...,s s=Σ  –  диагональная матрица, на диагонали которой в порядке 

убывания расположены сингулярные числа матрицы A. 

Последнее сингулярное число 6 0s   (равно нулю при ( )rank 5=A ), остальные 

сингулярные числа больше нуля. 

Произведем в (101) замену переменных: 

( )3 3CV T P P T CV CV T P P CVσ σ=  → = 

v x

v ξ v ξUΣV U Σ V , (105) 

где ( )6~ 0,ν IN . 

Из (105) получаем соотношения для ковариационных матриц x ,  1:5
x : 

( )  ( )  1:5

2 2
1:5,1:5

cov , cov− −
= =x xΣ Σ . (106) 

Рассмотрим ошибку проектирования 4-той точки: 

( ) ( )6 6:,1:5 1:5 :, 6 :, 6
4 4 4 4

4 4
CV CV CV CV CV CVδ x σ σ σ       

       

+= − =  − = − = +x x xq ξ v v v y

B

A A V B B B , (107) 

где :,1:5 1:5
4 CV CVσ   

   
= +xy vB  - двумерная случайная величина со следующим 

распределением: 

   ( ):,1:5
2

21: 5,1: 5 : ,1: 5
0, T

 
 

− +y IN B Σ B  (108) 

На основе (107) можно получить два ограничения сверху на абсолютную  

величину 
6

x : 
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( ) ( )6 61, 6 2 , 6
4 4
1 1 2 2, .CV CVδ σ y δ σ y   

   

+  + x xq qB B  (109) 

Подстановкой в (109) вместо 1y , 2y  СКО 1 2,y yσ σ , рассчитанных в соответствии 

с (108), можно получить доверительные границы  6 6,σ σ−  на величину 
6

x  с 

уровнем значимости, соответствующим 1: 

( ) ( )6 1, 6 2 , 6
4 4
1 21 2min , .CV y CV y

σ δ σ σ δ σ σ   
   

=  + +
  

q qB B  (110) 

Ослабим границу (110) до (111) для упрощения вычислений и с учетом того, 

что она не точна в связи с производимой линеаризацией и использованием в 

расчетах оценок положения, а не действительных значений.  

   ( )    ( )1, 6 2 , 66 :,1:5
4 2

,
1: 5,1: 5 : ,1: 5

max , trace 2CV T
σ d δ σd  

 

−
= = + +qB B B Σ B . (111) 

Скорректируем наименьшее сингулярное число матрицы Σ : 

( )( )6
,1 5 6: diag ,..., ,max 1 ,σs s s=Σ  (112) 

Таким образом, после учета дополнительной информации (величины ошибки 

перепроектирования контрольной точки 4δq ), расчетные СКО для x  были 

уменьшены: 

2 2 2,− − −
=xP Σ Σ Σ . (113) 

На основе (112) матрицу ковариаций P3P-оценок расположения маркера 

можно выразить как: 

( )3

2

P P
CVσ−=

ξ

2 T
P VΣ V . (114) 

На рисунке 42 представлены результаты сравнения фактических СКО со 

значениями, рассчитанными при помощи линеаризованной и скорректированной 

моделей ошибок P3P. Параметры расположения маркера относительно камеры 

выбирались случайным образом в следующих диапазонах: -1…1 м по осям x, y; 0.6…3 

м по оси z; 0…45 отклонения оптической оси камеры от нормали к плоскости маркера. 
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Рисунок 42 – Проверка прогнозируемых СКО при случайном выборе 

параметров расположения маркера: 

а) для P3P-оценок ориентации; б) для P3P-оценок положения 

В сравнении использованы результаты, полученные по 400-ам измерениям СТЗ 

в 100 различных случайных положениях маркера при СКО шума СТЗ CVσ  = 0.001. 

Таким образом, разработанная модель ошибок алгоритма P3P позволяет 

рассчитать значения СКО, боле близкие к фактическим, позволяя учесть 

производимый алгоритмом отбор решений с минимальной ошибкой 

перепроектирования контрольной точки.  

3.1.4.3 Модель измерений по угловым точкам маркера для право-инвариантных 

ошибок ВИНС 

Введем вектор ошибок параметров положения маркера: 

6 1 3 1 3 1,
T

m T m T

m h ξδ δ  
 =  φ rX , 1

( )h

m m

ξ hl δ
δ J δ−=

φ
r r , (115) 

где ˆm m m
h h hb hδ δ= −r r C r  – право-инвариантная ошибка оценки положения маркера в  

опорной СК; 

( )(3)logm SO
h hmδ δ=φ С  – ошибка оценки матрицы ориентации СК маркера в 

опорной СК ˆ
hm hm hmδ=С С С . 

Модель измерений для каждой из угловых точек маркера аналогична  

модели (86). Выразим радиус-вектор положения i-той угловой точки m-того 

маркера в опорной СК через радиус-вектор его положения и его матрицу 



110 

 

ориентации: 

i m i
h h hm m= + r r C d , (116) 

где 
m
hr  – радиус-вектор в опорной СК центра связанной с маркером СК; 

hmC  – матрица перехода из опорной СК в связанную с маркером СК; 

i
md – радиус-вектор i-той угловой точки маркера в связанной с маркером СК. 

Получим из (116) выражение для право-инвариантной ошибки i-той угловой 

точки маркера: 

( ) ( )

( )3

ˆ ˆ

ˆ ,

i i i m m i
h h hb h h hb h hm hb hm m

m T i
h hb hm hm m

δ δ δ δ δ

δ I δ δ

= − = − + −  =

= + − 

r r C r r C r C C C d

r C C C d
 (117) 

Подставив (117) в выражение для невязки между измерением и прогнозом (87), 

получим линеаризованную модель невязки для i-той угловой точки маркера: 

( )( )
( )( )

3
ˆ ˆ

ˆ ˆ ,

CV i T m T i
i i c hb h h hb hm hm m

CV i T m i m
i c hb h h h h h

π δ δ I δ δ

π δ δ S δ δ

 −  − + −  

  −  − + −
 

C r r C C C d

C r r d φ φ

Y ν

ν

 (118) 

где ˆ ˆi i
h hm m= d C d . 

и запишем матрицы-параметры линеаризованной модели ошибок измерений 

ВИНС по угловым точкам маркера, используя обозначения (14): 

mvM  = 8CVσ  I , 
1 4, ...,

T
T T

ms ms ms
 =
 

H H H , 
1 4, ...,

T
T T

m m m
 =
 

H H H , (119) 

где 2 3 2 9
ˆ0 , , 0 ,i i T i

ms c hb τπ 
 = − 
 

H C H , ( )ˆ ( ) , 1 4i i T
τ c hb h h hπ S i= −  − =C v ω rH . 

Таким образом, на основе модели для опорных точек (117) получена модель 

ошибок измерений ВИНС по опорным маркерам с использованием право-

инвариантной ошибки положения маркера, удобная при обнаружении маркера с 

заранее неизвестным положением в опорной СК, так как в этом случае: 

1. Обеспечивается простота модели ошибок 6 1m X  при инициализации оценок 

расположения маркера на основе оценок расположения подвижного объекта и P3P-

оценок расположения маркера в СК видеокамеры. 

2. Малая погрешность линеаризации проективного преобразования в (118), так 
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как ошибки параметров взаимного расположения подвижного объекта и маркера 

не велики, а ошибки положения и ориентации в опорной СК не наблюдаемы. 

В рамках же основного сценария применения опорных маркеров, 

предполагается, что известны оценки их расположения в опорной СК, независимые 

от оценок положения подвижного объекта, в этом случае удобнее применять 

другую модель ошибок. 

3.1.4.4 Модель измерений по маркеру для право-инвариантных ошибок ВИНС 

Введем вектор ошибок параметров положения маркера: 

6 1 3 1 3 1, mm

T
m m T m T

m ξξ
ξ δ δ  

 = =
 
φ rX , (120) 

где mξ = ( )(3) 1ˆlogSE
hm hmT T −

, 

1 30
ˆ

ˆ ˆ

1
h

hm
m

m
hT

C r



 
  
 

= , 
1 3

, (3)
0

ˆ ,
1

h
m

m

m
h h

hm hmT T
C

SET
r



 
 

 
=   – оценочное и 

действительное значение матрицы перехода, описывающей положение и 

ориентацию маркера в опорной СК. 

В данном пункте сформируем вектор невязок таким образом, чтобы обеспечить 

линейность модели ошибок измерений по право-инвариантной ошибке ξ  

подвижного объекта; так как в рамках рассматриваемого сценария применения 

ВИНС они могут быть велики. Ошибки оценок расположения маркера m
ξ  и P3P-

оценок 3P P
ξ  можно считать малыми. 

Рассмотрим групповую невязку χ  между P3P-оценками и оценками 

расположения подвижного объекта и маркера: 

3 1ˆ ˆ , (3)P P
hc cm hmχ T T T χ SE−=  , (121) 

( ) ( )( )
( )( ) ( ) ( )

( ) ( ) ( )

3 1 (3) 3 1 (3) 1 1

(3) 3 1 (3) (3)

1 1
(3) (3) 3 (3) 3

ˆ

ˆ ˆ ˆ ˆ ˆexp exp

ˆ ˆexp exp exp

exp Ad ,
hc

P P SE P P SE
hc cm hm hc hc hm hm

SE P P SE SE m
hc hc

SE SE P P SE m P P m
r rT

χ T T T T T T T

T T

J J o

− − − −

−

− −

= =  =

=   − =

    = −  + − + +     

ξ ξ

ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

 (122) 
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где 
( )

( ) ( )

(3)
3 3(3)

(3)

0SO
r ξSE

r SO
r ξ

J δ
J

Q J δ


 
 =
 
 

φ

ξ φ
– правый якобиан SE(3); 

( )
3 3

ˆ

ˆ 0
Ad ˆ ˆˆhc

hc

cT
h hcS


 

=  
  

С

r С С
. 

Выражение для 
(3)SE

rJ  в явном виде, как и другие полезные формулы в 

контексте вычислений на группах SО(3) и SE(3) приведены в [93] с поправкой на 

иной порядок размещения компонентов поворота ξδφ  и сдвига ξδr  в ξ .  

В отличии от задачи начального оценивания расположения объекта 

относительно маркера, в задаче коррекции ВИНС по маркеру модель (101) может 

использоваться напрямую, без необходимости обращения матрицы А.  

В качестве вектора невязок mY  будем использовать вектор ( )(3)logSE χ=y , 

помноженный на квадратную матрицу, обеспечивающую декорреляцию ошибок 

P3P-оценок в соответствии с (101): 

( )1 1
1

ˆ ˆAd Ad ,
hc hc

CV
m l l r mT T− −

− =   −  −
  

J y v J J ξ ξY A A  (123) 

где ( ) ( )  (3) (3)
3 6, , 0,0, ,...

TSE SE
l r r rJ J= − = =J ξ J ξ ξ y y  – при первой коррекции по 

маркеру; 

6l r= =J J I  – при последующих коррекциях по маркеру. 

Предложенное определение rJ , lJ  позволяет не прибегая к итеративному 

оцениванию [42] повысить точность линеаризованной модели вектора невязок в 

условиях значительных ошибок оценок угла рыскания и координат в опорной СК 

подвижного объекта при первом наблюдении маркера. 

Отметим, что при стремлении m
ξ , 3P P

ξ  к нулю y  стремится к ξ , обеспечена 

линейность по ξ . 

Запишем матрицы-параметры линеаризованной модели измерений, используя 

параметры модели измерений ББФК (14): 

ivM  = 6CVσ  I , 6 6 6 9, 0 ,is τ  =  ξH H H , 1
i r

−= − ξJH H , (124) 
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где 1ˆAd
hc

lT −= −ξ JH A ; 

( ), ( )
T

TT

τ h h h hS −
 ξ ω v ω rH = H . 

3.1.5 Разработка моделей динамики для право-инвариантных ошибок ВИНС 

Использование дополнительных типов визуальных признаков, – опорных точек 

с параметризацией обратной глубины и опорных маркеров, и включение ошибки 

синхронизации между БИНС и СТЗ в вектор состояния,  потребовали расширения 

модели динамики ВИНС с право-инвариантной ошибкой, рассмотренной в [15]. 

Сформированная модель описывает динамику ошибок параметров БИНС (82) и 

ошибок параметров положения для всех используемых типов признаков. 

Приведем матрицы динамики ошибок БИНС в обозначениях ББФК (19): 

( )
( ) ( )

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 3 3 3 1

1 3 1 3 1 3 1 3 1 3

0 0 0 0 0

0 0 0 0

0 0 0 0
,

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 1

hb

h hb

h h hb

m gyr

m acc

m τ

S

S S

T

T

T

    

   

   

    

    

    

 
 
 
 

=  −
 

− 
−  

C

r C

g v C

I

A
I

I

 

16 Δ ,s t= + F I A  

(125) 

( )

( )

3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 1

3 3 3 3 3 1

3 3 3 3 3 3 3 3 1

3 3 3 3 3 3 3 3 1

3 1 3 1 3 1 3 1

Δ

Δ

Δ Δ

0 0 0 0

0 0 0 0

0 0 0 ,
0 0 0 0

0 0 0 0

0 0 0 0

hb

h hb

h hb hb
ws

b acc

b acc

b τ

ARW

ARW

ARW VRW

t

t

t t

S

S

σ

σ

σ

   

   

  

   

   

   

 
 
 
 

=  
 
 
 
  

C

r C

v C CM
I

I

 (126) 

где Δt  – шаг по времени; hω , hg  – векторы угловой скорости и ускорения 

свободного падения в опорной СК; m gyrT , m accT , m τT  – значения времени корреляции 

для смещений нуля ДУС, акселерометра, а так же для ошибки синхронизации 

БИНС и СТЗ; ,b gyr b accσ σ , b τσ  – СКО входного шума формирующих фильтров 

для смещений нуля ДУС, акселерометра, ошибки синхронизации БИНС и СТЗ. 

Формирующие фильтры для смещений нуля инерциальных датчиков настроены 

на экспоненциально-коррелированный процесс: 
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Δ Δ
2b m

m m

t t
σ σ

T T

 
= − 

 
, (127) 

где mσ  – СКО экспоненциально-коррелированного процесса. 

Приведем матрицы динамики признаков в обозначениях (19).  

1. Для опорных точек с параметризацией декартовыми координатами: 

( ) ( )3 9 3 4 3 10

(dec)
3 3 1

Δ0 , Δ , 0 , , 0 ,

, 0 , 1... .

ARW
i i

is h hb i ws h hb

i i w

tS t S

i N

  



   = =
   

= = =

r C r CF M

F I M

 (128) 

2. Для опорных точек с параметризацией обратной глубины: 

( )

( )

( )

( )

3 9 4 10 3 10

3 9 4 10 3 10

1 16 1 13

(idp)
7 7 1

Δ

Δ

0 Δ , 0 , 0

0 Δ , 0 , , 0 , \

                  0                    0

, 0 , 1... .

ARW

ARW

сi сi
hb hbh h

i i
is h hb i ws h hb

i i w

t

t

S t S

S t S

i N

  

  

 



   
   
   
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3. Для опорных маркеров: 

(mrk)
6 6 16 6 1 6 1, 0 , 0 , 0 , 1... .m ms m ws m w m N  = = = = =F I F M M  (130) 

4. Для опорных маркеров с заранее неизвестным положением  

( ) ( )
3 16 3 13
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 (131) 

Здесь (dec)N , (idp)N  – число опорных точек с параметризацией декартовыми 

координатами и обратной глубины соответственно; (mrk)N  – число опорных 

маркеров, (mrk)N  – число опорных маркеров c заранее неизвестным положением. 

3.1.6 Тестирование ББФК-ВИНС с разработанными моделями динамики и 

измерений для право-инвариантных ошибок 

3.1.6.1 Тестирование ББФК-ВИНС с отслеживанием опорных точек 

Произведем численное моделирование работы ББФК-ВИНС в условиях, 

представленных в п. 2.7.3.1.1, но при использовании параметризации обратной 
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глубины и разработанных в разделе 3 моделей динамики и измерений, 

сформулированных относительно право-инвариантных ошибок ВИНС. 

Применение параметризации обратной глубины позволяет отказаться от карты 

высот (используемой в п. 2.7.3), т.е. априорной информации о принадлежности 

опорных точек заданным уровням высоты. Чтобы подчеркнуть устойчивость 

параметризации обратной глубины к параметрической неопределённости, для всех 

точек будем использовать одни и те же начальные значения обратной глубины и ее 

СКО: 0 0.5ρ = , 0 1ρσ = . 

Результаты численного моделирования позволят проверить как корректность 

реализации разработанных моделей ошибок, так и работу ББФК при их 

использовании. С точки зрения ББФК полученная модель ВИНС характеризуется 

в 2.3 раза большей размерностью векторов ошибок опорных точек и наличием у 

данной ошибки динамики (129). 

Аналогично проделанному в п. 2.7.3, построим графики среднеквадратических 

ошибок для оценок координат ( posq ), скорости ( velq ), ориентации ( attq ) при 

заданных en , нормированные на ошибку ОФК (рисунок 51), а также графики 

нормированного среднеквадратического расхождения между оценками при 

заданных en  и оценками стандартного ОФК для координат ( posc ), скорости ( velc ), 

ориентации ( attc ) (рисунок 52). 

 
Рисунок 43 – Нормированные среднеквадратические ошибки оценок ББФК при 

заданных en  
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Рисунок 44 – Нормированное среднеквадратическое расхождение между оценками 

ББФК при заданных en  и оценками стандартного ОФК 

Как видно из графиков на рисунках 40-41, сходимость оценок ББФК к оценкам 

ОФК с ростом en , наблюдавшаяся в п. 2.7.3, воспроизводится при переходе на 

разработанные модели ошибок; при ne > 30 расхождение менее 0.5%, при  ne > 50 

расхождение менее 0.05%. При реализации ББФК-ВИНС будем использовать ne = 

100. Среднее время вычислений одной итерации ББФК (шаг прогноза + шаг 

коррекции) составило 43 мс (при ne = 100 и N = 300), что примерно в 35 раз меньше 

времени вычислений ОФК при данном значении N. 

RMSE для ОФК составили: для координат – 0.07 м, для скорости – 0.015 м/c, 

для ориентации: 0.16.  

Накопленная за время моделирования ошибка позиционных координат 

составила 0.054 м, что сопоставимо с результатом в п. 2.7.3 (0.04 м), но в отличие 

от результатов п. 2.7.3 получено без использования высокоточной карты высот для 

начальной оценки расположения точек.  

Проверим, что расчетные с.к.о. фильтра не занижены. На рисунке 

представлено отношение фактической ошибки к расчетному значению 3 для 

оценок координат, скорости и ориентации, при различных значениях ne. 
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Время , с 

Рисунок 45 – Отношение ошибок оценок к расчетным значениям 3 при  

заданных значениях en   

Как видно из данных рисунка 42, отношение фактических ошибок оценок к 

расчетным значениям 3 меньше единицы, что соответствует правильной работе 

комплексирующего фильтра. При этом при малых значениях ne это отношение меньше, 

чем при больших ne, что объясняется консервативностью расчетных значений СКО. 

Проведенный анализ результатов численного моделирования свидетельствует о 

корректности оценок ББФК-ВИНС, использующей разработанные модели ошибок. 

3.1.6.2 Тестирование ББФК-ВИНС с отслеживанием опорного маркера 

Разместим на поверхности сцены опорный маркер (рисунок 46) со стороной 

0.5 м  с известным расположением (модель п. 3.1.4.4). Отслеживание опорных 

точек временно отключим. 

Ошибка оценок координат / 3 

Ошибка оценок скорости / 3 

Ошибка оценок ориентации / 3 
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Рисунок 46 – Кадры сцены с отслеживаемым опорным маркером при 

моделировании спуска подвижного объекта 

Изменим начальные условия моделирования из предыдущего пункта, задав 

ненулевыми начальные ошибки оценок позиционных координат угла рыскания 

подвижного объекта:  

 0Δ 1,1, 0.5 м, Δ 40
T

r ψ= − =  . (132) 

Начальные оценки расположения маркера выберем следующие: 

   ( )(3)
0 0 3

ˆˆ 0,0,0 , exp 5,6,0 180 ,
T Tm m SO

h h hm hm hmπ С= = = −  =r r С С I , (133) 

В соответствии с (133), положение центра СК маркера известно без 

погрешности, но ориентация относительно местной вертикали известна не точно. 

На рисунках 47-49 представлены действительные и оценочные параметры 

положения и ориентации подвижного объекта и маркера, а также расчетные 

диапазоны 3, построенные в соответствии с параметрами ковариации 

комплексирующего  фильтра. 

1 

4 

2 

3 
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Рисунок 47 – Оценивание координат при коррекции по опорному маркеру 

 

Рисунок 48 – Оценивание углов Эйлера при коррекции по опорному маркеру 
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Рисунок 49 – Оценивание углов наклона нормали маркера при коррекции по 

опорному маркеру 

Среднеквадратическая погрешность оценок координат при зависании над 

маркером в течении последних 5 с моделирования составила 0.02 м. 

3.1.6.3 Тестирование ББФК-ВИНС с отслеживанием опорных точек и опорных 

маркеров 

Разместим на поверхности сцены два опорных маркера со стороной 0.5 м и с 

известным расположением, будем отслеживать на кадрах до 300 опорных точек 

(рисунок 50). 

 

Рисунок 50 – Кадр сцены с отслеживаемыми опорными точками и опорными 

маркерами при моделировании спуска подвижного объекта 
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До 7-ой секунды моделирования будем использовать коррекцию только по 

опорным точкам, после – по опорным точкам и маркерам. На рисунках  51-52 

представлены действительные и оценочные параметры положения и ориентации 

подвижного объекта, а также расчетные диапазоны 3 , построенные в соответствии 

с параметрами ковариации комплексирующего  фильтра. 

 

Рисунок 51 – Оценивание координат при коррекции по опорным точкам и 

опорным маркерам 

 

 Рисунок 52 – Оценивание углов Эйлера при коррекции при коррекции по 

опорным точкам и опорным маркерам 
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Как видно из рисунков  51-52, сброс начальной неопределенности оценок 

позиционных координат и угла рыскания происходит только по данным маркера с 

известным положением, что свидетельствует о том, что разработанные модели 

ошибок обеспечивают консистентность рекуррентного фильтра ВИНС.  

Таким образом, численное моделирование подтверждает корректность работы 

ББФК-ВИНС с опорными точками и опорными маркерами. Точность определения 

координат по маркерам достаточна для решения такой прикладной задачи, как 

посадка подвижного объекта. 

 Описание программной реализации ВИНС 

В рамках разработанного варианта ВИНС отслеживаются визуальные 

признаки двух типов. 

1. Каталогизированные опорные маркеры типа Aruco [11]. 

2. Опорные точки, выделяемые детектором точек и отслеживаемые на 

последовательности кадров.  

Для маркеров из каталога указаны: 

• уникальный ID; 

• длина стороны маркера в метрах; 

• радиус-вектор положения в опорной СК; 

• матрица ориентации в опорной СК; 

• СКО ошибок оценок положения маркера; 

• СКО ошибки оценки угла курса СК маркера;  

• СКО ошибки оценки угла между нормалью маркера  и местной 

вертикалью. 

В качестве опорной СК может быть выбрана любая декартовая система 

координат, ось OZ которой направлена по местной вертикали. 

Отслеживание опорных маркеров, имеющих привязку в опорной СК, 

обеспечивает отсутствие дрейфа для параметров положения и ориентации 
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подвижного объекта. Отслеживание опорных точек критично на участках 

траектории без обзора маркеров, позволяя замедлить накопление ошибок.  Если в 

окружающей среде мало контрастных деталей, в ней могут быть размещены 

вспомогательные маркеры без привязки в опорной СК.  

Кроме видеокамеры и инерциальных датчиков, в состав разработанного 

варианта ВИНС введен лазерный высотомер, использующийся в качестве 

контрольного датчика.  

В программном обеспечении ВИНС предусмотрены три режима работы: 

основной режим и режим выставки, редуцированный режим.  

3.2.1 Основной режим работы навигационной системы 

Схема основного режима работы навигационной системы с техническим 

зрением изображена на рисунке 53. 

На схеме основного режима работы используются следующие обозначения: В – 

лазерный высотомер, А – трехосевой акселерометр, Г – трехосевой датчик угловой 

скорости, ВК – видеокамера, d – измеренное расстояние до поверхности вдоль луча 

зрения высотомера, bn , b – измеренные векторы кажущегося ускорения и угловой 

скорости в ССК; hbq  – кватернион перехода из опорной СК в ССК; hbC  – матрица 

перехода из опорной СК в ССК; hr  – вектор позиционных координат центра ССК 

в опорной СК; hv  – вектор скорости центра ССК в опорной СК; 
d

hz  –  усредненная 

оценка высоты по данным высотомера, hn , h – усредненные оценки векторов 

кажущегося ускорения и угловой скорости в ОСК,  ,a gb bD D  –  поправки к оценкам 

смещений нуля инерциальных датчиков, Δ ,Δ ,Δh hb hr q v  – поправки к оценкам 

навигационных параметров. 
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Рисунок 53 – Схема основного режима работы ВИНС 

В рамках предварительной обработки высокочастотных измерений датчиков 

производится цифровая НЧ КИХ-фильтрация. Высокочастотные измерения 

датчиков переводятся в опорную СК и усредняются фильтром скользящего 

среднего, после чего поступают в низкочастотную часть алгоритма.  

В низкочастотной части алгоритма основного режима работы ВИНС 

производится обработка изображений видеокамеры с целью выделения на них 

визуальных признаков (детектор маркеров и детектор особых точек). Качество 

изображений анализируется для адаптивной оценки неопределенности 

локализации признаков на изображениях. Для использования в комплексирующем 

фильтре формируется линеаризованная модель измерительной системы; 

производится контроль выбросов: опорные точки, не прошедшие проверку по 

критерию 2 для невязки измерений, нормированной с учетом ее расчетной 

матрицы ковариации, отбраковываются. При помощи ББФК на основе 

линеаризованной модели измерительной системы осуществляется выработка 

поправок. 

Модель динамики ошибок БИНС описана в пункте 3.1.5, модель измерений по 
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угловым точкам маркера – в пункте 3.1.4, модель измерений по опорным точкам – 

в  пункте 3.1.3. 

3.2.2 Режим выставки навигационной системы 

Режим выставки используется для начального оценивания положения 

подвижного объекта в опорной СК, а также при необходимости сброса 

накопленной погрешности в определении позиционных координат и угла рыскания 

при первом попадании в поле зрения видеокамеры опорных маркеров после их 

длительного отсутствия в кадре. 

Определение положения и ориентации объекта относительно опорного маркера 

с известным расположением производится при помощи алгоритма P3P. Начальные 

значения матрицы ковариаций фильтра Калмана отражают неопределенности 

таких оценок, и рассчитываются согласно модели ошибок алгоритма P3P, 

описанной в пункте 3.1.4.2. В случае отсутствия маркера в поле зрения, ориентация 

объекта относительно плоскости горизонта рассчитывается по показаниям 

акселерометра. 

3.2.3 Редуцированный режим работы навигационной системы 

ВИНС переходит в редуцированный режим работы при отсутствии маркеров и 

опорных точек в поле зрения видеокамеры более 5 с. Оценки формируются БИНС; 

производится коррекция высоты и вертикальной составляющей скорости по 

данным высотомера в МНК фильтре по скользящему окну измерений, 

производится коррекция углов крена и тангажа согласно модели гировертикали в 

ОФК c 6-ю степенями свободы. В данном режиме работы высота, вертикальная 

составляющая скорости, углы крена и тангажа оцениваются без дрейфа. При 

возобновлении поступления данных СТЗ происходит возврат либо в основной 

режим работы, либо в режим начальной выставки, если в поле зрения имеется 

навигационный маркер. 

 Структура программно-аппаратного обеспечения 

Разработанный вариант ВИНС на аппаратном уровне состоит из МЭМС 

бесплатформенного инерциального измерительного модуля (БИИМ) MPU-9250, 
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CMOS видеокамеры IMX415, лазерного высотомера TF03-180, вычислительных 

устройств (ВУ НС): микрокомпьютера Orange Pi 5B и микроконтроллерной платы 

STM32F407G-DISC1. 

В процессе подготовки программно-аппаратного обеспечения было оформлено 

два свидетельства о регистрации программ для ЭВМ [94], [95] (совместно с 

соавторами). Программное обеспечение ВИНС разделено между компонентами ВУ 

НС. Программное обеспечение микроконтроллера ВУ НС обеспечивает: 

• опрос инерциальных датчиков ИИМ (акселерометра и датчика угловой 

скорости; 

• опрос высотомера; 

• предварительную обработку измерительных данных; 

• формирование инерциальных оценок параметров движения по алгоритму 

корректируемой БИНС 

• обмен информацией с микрокомпьютером ВУ НС; 

• обмен информацией с компьютером оператора; 

• обмен информацией с потребителями навигационной информации. 

Программное обеспечение микроконтроллера ВУ НС написано с 

использованием библиотеки HAL на языках C и C++.  На рисунке 54 приведена 

структура программного обеспечения микроконтроллера ВУ НС.  

Программное обеспечение микрокомпьютера ВУ НС обеспечивает: 

• обработку видеопотока видеокамеры НС; 

• анализ качества кадров видеопотока; 

• детектирование маркеров и локализация их угловых точек; 

• детектирование и отслеживание опорных точек на последовательности кадров; 

• управление моделью измерительной системы; 

• формирование оптимальных поправок к оценкам вектора состояния модели; 

• обмен информацией с микроконтроллером ВУ НС. 
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Инициализация и конфигурирование 

низкоуровневых драйверов для 

работы с периферией (HAL)

Функция AppInit

Инициализация и конфигурирование 

драйверов прикладного уровня, 

конфигурирование режимов 

измерений датчиков 

Чтение данных из flash-памяти

navSystem.initialAligment():

запуск навигационной системы 

(на первой итерации)

Measure(): опрос датчиков  

navSystem.updateParameters(): расчет  

оценок навигационных параметров

navSystem.correctionAccelerometer();

navSystem.correctionGyroscope();

 - процедуры калибровки датчиков по 

требованию оператора, с записью 

коэффициентов во flash-память 

Функция AppWork 

cvTransiver:

драйвер обмена 

информацией с 

микрокомпьютером

uart2, uart6:

драйверы обмена информацией с ПК 

оператора и потребителем навигационной 

информации соответственно

Обработчики 

прерываний 

микроконтроллера

 
Рисунок 54 – Структура ПО микроконтроллера ВУ НС 

Программное обеспечение микрокомпьютера ВУ НС (рисунок 55) написано на 

языкe Python и использует библиотеки OpenCV и SciPy, реализовано в 

многопоточном варианте. Детектирование Aruco маркеров осуществляется с 

использованием библиотеки OpenCV. Для выделения опорных точек используется 

реализация ORB (Oriented FAST and Rotated BRIEF, [84]), доступная в OpenCV. 

Таким образом, высокочастотный (400 Гц) контур ВИНС (рис. 53) реализован в 

программном обеспечении микроконтроллера ВУ НС, а низкочастотный (10-20 Гц) 

– в программном обеспечении микрокомпьютера ВУ НС.  
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Инициализация структур данных 

визуальных признаков и 

навигационных параметров

Функция start_program

Проверка подключений, запуск 

видеопотока

process_frame():

Обработка изображений, управление 

статусами визуальных признаков

get_nav_input() :

Запрос данных у микроконтроллера 

vins_kalman_prepare(): 

инициализация параметров 

ковариации, подготовка матриц 

линеаризованных моделей ошибок

vins_block_kalman(): реализация 

алгоритма ББФК

Функция vins_system 

send_nav_output():

Отправка данных  микроконтроллеру 

 
Рисунок 55 – Структура ПО микрокомпьютера ВУ НС 

 Тестирование программно-аппаратного макета ВИНС в лабораторных 

условиях 

3.4.1 Тестирование на роботе Kuka с контролируемыми параметрами траектории 

Робот Kuka позволяет сформировать траекторию движения с контролируемыми 

параметрами, что дает возможность воспроизвести сценарий посадки для 

программно-аппаратного макета ВИНС.  

На рисунке 56, а представлен макет ВИНС в корпусе с креплением на схват 

робота. На рисунке 56, б представлен кадр с видеокамеры макета с обзором 

маркеров: опорного, с известным положением (модель п. 3.1.4.4) и 

вспомогательными (модель п. 3.1.4.3), положение которых относительно 

видеокамеры определяется с использованием P3P в момент обнаружения.  



129 

 

 

 а) б)  

Рисунок 56 – Тестирование макета ВИНС на роботе Kuka: 

а) общий вид; б) кадр столешницы с маркерами 

При проведении испытаний макет перемещался по вертикальной траектории, 

расстояние до поверхности столешницы уменьшалось с 0.9 м до 0.4 м со средней 

скоростью 0.2 м/c. В верхнем и нижнем положении макет задерживался на 15 с. 

Кроме тестов с маркерами, также проводились тесты с опорными точками, 

отслеживаемыми на произвольных предметах с помощью KLT-трекера (рис. 57), а 

также смешанные тесты.  

На рисунке 57 представлены кадры с видеокамеры макета ВИНС во время 

снижения  с отслеживанием опорного маркера (выделен зеленым) и опорных точек 

при помощи KLT-трекера (выделены красным). 

 

Рисунок 57 – Кадры с видеокамеры макета ВИНС во время снижения с 

коррекцией по опорному маркеру и  опорным точкам, отслеживаемым KLT-

трекером 

Для следующих трех вариантов тестов были получены значения 

среднеквадратической погрешности (СКП) оценок положения. 

1. На столешнице размещены вспомогательные маркеры с известной 

геометрией, определяемой длиной стороны. отслеживаемые детектором маркеров. 

Макет ВИНС 

Робот Kuka 

Опорный маркер 

Вспомогательные 

маркеры 

Маркеры 

1 2 3 
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Положение вспомогательных маркеров относительно видеокамеры оценивается 

при помощи P3P в момент их первого обнаружения. Далее коррекция оценок ВИНС 

происходит в соответствии с моделью ошибок измерений в п. 3.1.4.3. Параметры 

СТЗ:  СКО шума 0.005CVσ = . 

2. Угловые точки вспомогательных маркеров, отслеживаемые детектором 

маркеров, рассматриваются без привязки к геометрии маркера: в качестве опорных 

точек с параметризацией обратной глубины. Коррекция оценок ВИНС происходит 

в соответствии с моделью ошибок измерений в п. 3.1.3.2. Параметры СТЗ:  СКО 

шума 0.005CVσ =  , начальные значения обратной глубины и ее СКО: 
1

0 5 мρ −= , 

1
0 10 мρσ

−= . 

3. На столешнице размещены произвольные предметы, на которых при помощи 

KLT-трекера отслеживаются опорные точки с параметризацией обратной глубины, 

коррекция оценок ВИНС происходит в соответствии с моделью ошибок измерений 

в п. 3.1.3.2. Максимальное число отслеживаемых точек N = 200. Параметры СТЗ:  

СКО шума 0.015CVσ =  , начальные значения обратной глубины и ее СКО: 

1
0 5 мρ −= , 1

0 10 мρσ
−= . 

Тесты 1-3 проведены двукратно: при наличии и отсутствии опорного маркера с 

известным положением, коррекция по которому осуществляется в соответствии с 

моделью п. 3.1.4.4.  

Результаты тестов приведены в таблице 3. 

Таблица 3 – СКП при тестировании на роботе Kuka 

 

Тест 1 : 

вспомогательные 

маркеры с известной 

геометрией 

Тест 2 :  

Точки вспомогательных 

маркеров в качестве 

опорных точек 

Тест 3 : 

Точки, отслеживаемые 

KLT-трекером в качестве 

опорных точек 

Совместно с 

опорным маркером 
1,1 см 1.3 см 1,3 см 

Без опорного 

маркера 
2,5 см 3,4 см 3,2 см 

Было получено, что в тестах с обзором опорного маркера достигается 

минимальная СКП, ее значение слабо зависит от типа дополнительных визуальных 

признаков. В отсутствии опорного маркера, коррекция по вспомогательным 

маркерам (тест 1) приводит к меньшей СКП, чем коррекция по опорным точкам 

(тесты 2 и 3), так как позволяет с первого кадра оценить расстояние до сцены. 

Сравнение СКП для тестов 2 и 3 показывает, что несмотря на то, что KLT-трекер 
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отслеживает точки с меньшей точностью, чем детектор  маркеров, при 

использовании KLT-трекера достигается примерно те же значения СКП благодаря 

отслеживанию большего числа точек. 

3.4.2 Перемещение между положениями с известными координатами c 

коррекцией по опорным точкам 

Путем перемещения макета ВИНС между точками комнаты с заранее 

известными координатами можно оценить статическую ошибку оценок 

положения. Такой подход позволяет проводить тестирование макета без жестких 

пространственных ограничений рабочей зоны, присущих стенду на базе робота Kuka. 

На рисунке 58 представлена оценочная траектория при перемещении макета 

ВИНС между тремя контрольными положениями с известными координатами 

(«стартовая точка», «нижняя точка», «конечная точка»). Коррекция 

осуществлялась по опорным точкам с параметризацией обратной глубины. 

 

Рисунок 58 – Оценочная траектория при перемещении макета ВИНС между 

положениями с известными координатами (в различных проекциях) 

Результаты тестирования приведены в таблице 4. 

Таблица 4 – СКП в контрольных положениях 

Стартовая точка Нижняя точка Конечная точка 

0,5 см 1.5 см 2,6 см 

При неподвижности макета в конечной точке зафиксировано отсутствие дрейфа 

оценок положения. 

Результаты тестирования программно-аппаратного макета позволили 

подтвердить правильность реализации алгоритмов комплексирования на основе 

ББФК и право-инвариантных математических моделей ошибок ВИНС. 
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 Основные результаты и выводы по разделу 

1. Разработаны консистентные математические модели ошибок для ББФК-

ВИНС. Новизна разработанных моделей ошибок для ВИНС с опорными точками с 

параметризацией обратной глубины и опорными маркерам типа Aruco состоит в 

том, что они сформулированы относительно право-инвариантных ошибок, что 

позволяет устранить ложную наблюдаемость ошибок оценивания абсолютных 

позиционных координат и курса.  

3. Применение параметризации обратной глубины для новых опорных точек 

позволило использовать их в ВИНС сразу после обнаружения, без необходимости 

ожидания повторного обзора из различных положений камеры и без привлечения 

дополнительной информации о геометрии поверхности визуальной сцены, такой 

как карта высот местности. 

4. Алгоритм ББФК эффективен в применении к ВИНС с разработанными 

моделями ошибок, так как формируемые им оценки близки к оценкам ОФК, но при 

существенно меньшем времени вычислений. 

5. Разработана линейная модель ошибок алгоритма P3P, используемого при 

начальной выставке ВИНС по опорному маркеру. В отличие от существующих 

моделей, данная модель позволяет учесть производимую алгоритмом P3P 

отбраковку плохо обусловленных решений, построенных по трем точкам, за счет 

контроля по четвертой точке. Адекватность модели ошибок алгоритма P3P 

подтверждена в рамках численного моделирования при загрязнении его входных 

данных ошибками с известным СКО. 

6. Пункты выводов 1-3 подтверждены в рамках численного моделирования 

работы ВИНС на этапе посадки, использующей (I) данные KLT-трекера опорных 

точек; (II) данные KLT-трекера опорных точек и детектора Aruco-маркеров. В  ходе 

моделирования число одновременно отслеживаемых точек находилось в 

диапазоне 200…300; в этих условиях относительные отклонения от оценок ОФК 

составили менее 0.05% при ne  50. При ne = 100, N = 300 зафиксировано 35 кратное 

ускорение вычислений по сравнению с ОФК.  Показано, что фактические ошибки 

оценок навигационных параметров согласуются с расчетными параметрами 

ковариации комплексирующего фильтра. 
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7. Приведено описание структуры и режимов работы программной реализации 

ББФК-ВИНС, функциональность которой распределена между двумя 

устройствами: микроконтроллером, на котором реализована предварительная 

обработка измерительной информации и интегрирование инерциальных данных, и 

микрокомпьютером, на котором реализованы обработка изображений в рамках 

СТЗ и алгоритм комплексирующего фильтра.  

8. Результаты тестирования программно-аппаратного макета позволили 

подтвердить правильность реализации алгоритмов комплексирования на основе 

ББФК и право-инвариантных математических моделей ошибок ВИНС. 
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4 ИСПЫТАНИЯ РЕАЛИЗАЦИИ ВИЗУАЛЬНО-ИНЕРЦИАЛЬНОЙ 

НАВИГАЦИОННОЙ СИСТЕМЫ И РЕЗУЛЬТАТЫ ПРАКТИЧЕСКОГО 

ПРИМЕНЕНИЯ 

 Эксперимент со стендом-демонстратором ракетного двигателя 

Общий вид демонстратора ракетного двигателя с ВИНС представлен на  

рисунке 59.  

 

Рисунок 59 – Общий вид демонстратора ракетного двигателя 

Бесплатформенный инерциальный измерительный модуль (БИИМ), 

вычислительные устройства (ВУ НС), видеокамера и высотомер, входящие в состав 

ВИНС, а также система управления (СУ) располагаются на платформе 

демонстратора, размещенном на стапеле, имеющем 2 степени свободы. Ось 

вращения башни стенда обеспечивает перемещение демонстратора в плоскости 

горизонта, а ось вращения стрелы стенда – в вертикальной плоскости. 

На рисунке 60 представлены независимые угловые координаты α , β , 

описывающие положение стенда демонстратора ракетного двигателя. Стенд 

приводится в движение ракетным двигателем по сигналам от СУ, что позволяет 

сформировать пространственную траекторию движения демонстратора с ВИНС, 

состоящую из участка подъема над стартовой площадкой, горизонтального участка 

и участка посадки. 

ИИМ 

ВУ НС 

СУ 

Видеокамера 

Высотомер 

Демонстратор 

двигателя 

Стартовый 

маркер 

Посадочный 

маркер 
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Рисунок 60 – Координаты стенда демонстратора ракетного двигателя 

ВИНС поставляет в СУ оценки координат α , β  и их производных αω , βω  , 

формируемые путем пересчета оценок векторов позиционных координат и 

скорости демонстратора в системе координат стенда, в углы и угловые скорости 

отклонения стрелы и башни стенда в соответствии с параметрами их геометрии. 

При наличии посадочного маркера в поле зрения видеокамеры ВИНС передает в 

СУ также оценки угла tα  направления на маркер в плоскости горизонта из центра 

башни стенда, угол tβ , соответствующий положению опор платформы 

демонстратора на уровне маркера. Схема основного режима работы ВИНС во 

время эксперимента представлена на рисунке 61. 
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Рисунок 61 – Структурная схема основного режима работы ВИНС во время 

эксперимента 
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В соответствии со схемой 61, в основном режиме работы используется 

коррекция по опорным маркерам. Коррекция по опорным точкам применяется в 

случае пропадания маркера из области зрения.  

Начальное оценивание положения и ориентации ССК демонстратора 

относительно ПСК производится в результате начальной выставки ВИНС по 

стартовому маркеру с использованием P3P-алгоритма и разработанной для него 

модели ошибок.   

Положение и ориентация стартового маркера относительно ПСК, связанной с 

посадочным маркером, известны с неопределенностью (в пределах 1 м по 

позиционным координатам и 60 по углу рыскания). Таким образом, стартовый 

маркер используется в качестве грубого ориентира, уточнение положения объекта 

в ПСК происходит во время движения – при обнаружении посадочного маркера.  

Этот сценарий выбран для проверки, что ББФК-ВИНС с разработанной 

консистентной моделью ошибок измерений по опорному маркеру обеспечивает 

коррекцию даже в условиях значительных  ошибок оценок навигационных 

параметров подвижного объекта. 

Эксперимент производится по следующей программе. 1. Начальная выставка 

ВИНС по стартовому маркеру, расположенному под ракетным двигателем.  

2. После завершения начальной выставки запускается ракетный двигатель и 

начинается движение стенда с демонстратором в автоматическом режиме. Стрела 

поднимается вверх до момента захвата посадочного маркера видеокамерой ВИНС. 

3. СУ получает от информацию о направлении на целевое место  посадки, 

производит поворот башни стенда до совпадения α  и tα , после чего опускает 

стрелу, обеспечивая посадку демонстратора. Программу эксперимента 

иллюстрирует схема на рисунке 63 и фотоснимки на рисунке 58. 

На рис. 63 отмечена угловая точка посадочного маркера, рассматриваемая в 

качестве центра ПСК. На рис. 63, в линией отмечено направление стрелы стенда 

после посадки. При нулевом отклонении от назначенного места посадки линия бы 

прошла через центр ПСК. 
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Рисунок 62 – Системы координат в рамках эксперимента 

 

Рисунок 63 – Отработка программы эксперимента с демонстратором ракетного 

двигателя: а) кадры видеокамеры ВИНС во время эксперимента; в) посадка и 

отклонение от назначенного места посадки 

Программа эксперимента была отработана корректно и он был признан 

успешным. Программное обеспечение и аппаратная часть ВИНС работали штатно, 

отклонение от назначенного места посадки составило 7 см при пересчете в длину 

дуги из ошибки по углу α .  

На рисунках 64, 65 приведены оценки перемещения стенда по данным ВИНС, 

совмещенные с данными контрольных датчиков стенда. 
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Время, с 

Рисунок 64 – Оценки параметров движения стенда демонстратора ракетного 

двигателя (вертикальный канал) 

 

 
Время, с 

Рисунок 65 – Оценки параметров движения стенда демонстратора ракетного 

двигателя (горизонтальный канал) 
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На рисунке 66 приведена фотография места посадки демонстратора в заданную 

точку, отмеченную колышком, в рамках финального эксперимента. Отклонение 

центра платформы демонстратора от заданной точки посадки составило 6 см. 

  

Рисунок 66 – Фотография места посадки платформы демонстратора 

 Выводы по разделу 

В рамках эксперимента с демонстратором ракетного двигателя была 

подтверждена корректная работа программного и аппаратного обеспечения ББФК-

ВИНС, возможность ее использования в качестве бортового источника  

навигационной информации. Отклонение от назначенного места посадки 

составило 6 см. В ходе эксперимента была задействована следующая 

функциональность ББФК-ВИНС:  

1) оценивание при помощи ББФК вектора положения демонстратора, его 

кватерниона ориентации, вектора скорости, смещений нуля инерциальных 

датчиков, ошибки синхронизации БИНС и СТЗ;  

2) начальная выставка по стартовому маркеру с использованием разработанной 

модели ошибок P3P-алгоритма; 

3) комплексирование данных БИНС и СТЗ, отслеживающей опорные маркеры, 

на основе разработанных моделей динамики и измерений для право-

инвариантных ошибок ВИНС.  
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ЗАКЛЮЧЕНИЕ 

В рамках работы предложены вычислительно-эффективные методы обработки 

данных ВИНС, основанные на рекуррентной фильтрации с использованием 

консистентных линеаризованных моделей измерений. При решении задач 

исследования получены следующие новые результаты: 

1. Разработан алгоритм быстрого блочного фильтра Калмана (ББФК) для 

оценивания полного вектора параметров ВИНС, имеющий линейную 

вычислительную сложность от числа визуальных признаков, отличающийся от 

известных блочных фильтров близостью формируемых оценок к оценкам 

обобщенного фильтра Калмана (ОФК), что обеспечивается применением метода 

главных компонент для аппроксимации корреляционных связей между оценками 

фильтра.  

2. Разработанный алгоритм ББФК, в отличии от оконных MSCKF-алгоритмов, 

для которых также характерна линейная сложность от числа признаков, не 

накладывает ограничений на длительность отслеживания признаков. Это позволяет 

наблюдать признаки в течении длительного времени, уточняя оценки их 

расположения и оценки навигационных параметров.  

3. В разработанном ББФК используется новый метод построения верхних 

границ для совместных матриц ковариаций оценок параметров ВИНС, 

учитывающий погрешность аппроксимации по методу главных компонент, 

позволяющий устранить недооценку расчетных значений их СКО и избежать 

снижения чувствительности фильтра к результатам. 

4. Разработаны консистентные математические модели ошибок для ББФК-

ВИНС. Новизна разработанных моделей ошибок для ВИНС с опорными точками с 

параметризацией обратной глубины и опорными маркерам типа Aruco состоит в 

том, что они сформулированы относительно право-инвариантных ошибок, что 

позволяет уменьшить погрешность линеаризации и устранить ложную 

наблюдаемость ошибок оценивания абсолютных позиционных координат и курса.   

5.   Показано, что разработанные модели ошибок корректно описывают 

неопределенность оценок фильтра. Фактические ошибки оценок навигационных 
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параметров согласуются с расчетными параметрами ковариации 

комплексирующего фильтра при численном моделировании. 

6. Разработана линейная модель ошибок алгоритма P3P, используемого при 

начальной выставке ВИНС по опорному маркеру. В отличие от существующих 

моделей, данная модель позволяет учесть производимую алгоритмом P3P 

отбраковку плохо обусловленных решений, построенных по трем точкам, за счет 

контроля по четвертой точке. Адекватность модели ошибок алгоритма P3P 

подтверждена в рамках численного моделирования при загрязнении его входных 

данных ошибками с известным СКО. 

7. Программно-аппаратная реализация разработанной ВИНС применена для 

решения прикладной задачи навигационного обеспечения стенда-демонстратора 

многокамерного ЖРД с центральным телом на этапе посадки. 

8. В рамках эксперимента с демонстратором ракетного двигателя была 

подтверждена корректная работа программного и аппаратного обеспечения ББФК-

ВИНС, возможность ее использования в качестве бортового источника  

навигационной информации. Отклонение от назначенного места посадки 

составило 6 см. В ходе эксперимента была задействована следующая 

функциональность ББФК-ВИНС:  

1) оценивание при помощи ББФК вектора положения демонстратора, его 

кватерниона ориентации, вектора скорости, смещений нуля инерциальных 

датчиков, ошибки синхронизации БИНС и СТЗ;  

2) начальная выставка по стартовому маркеру с использованием разработанной 

модели ошибок P3P-алгоритма; 

3) комплексирование данных БИНС и СТЗ, отслеживающей опорные маркеры, на 

основе разработанных моделей динамики и измерений для право- 

инвариантных ошибок ВИНС.  
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