На правах рукописи

Altymi -

Крутикова Ирина Владимировна

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ АГРЕГАТИВНО УСТОЙЧИВЫХ КОНЦЕНТРИРОВАННЫХ ВОДНЫХ ДИСПЕРСИЙ НАНОПОРОШКОВ (Eu³⁺, Nd³⁺):Y₂O₃ И Al₂O₃, ИЗГОТОВЛЕННЫХ МЕТОДОМ ЛАЗЕРНОГО ИСПАРЕНИЯ МАТЕРИАЛА

Специальность 02.00.04. - «Физическая химия»

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

> Екатеринбург 2017

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте электрофизики Уральского отделения Российской академии наук

Научный руководитель:	кандидат технических наук Иванов Максим Геннадьевич	
Официальные оппоненты:	доктор физико-математических наук профессор кафедры компьютерной физики ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», г. Екатеринбург Шур Владимир Яковлевич	
	кандидат технических наук доцент кафедры химии и технологии кристаллов ФГБОУ ВО «Российский химико-технологический университет имени Д.И. Менделеева», г. Москва Файков Павел Петрович	
Ведущая организация:	Фрязинский филиал ФГБУН Института радиотехники и электроники им. В.А. Котельникова РАН, г. Фрязино	

Защита состоится 29 марта 2017 г. в 14:00 часов на заседании диссертационного совета Д 212.298.04 в Федеральном государственном автономном образовательном учреждении высшего образования «Южно-Уральский государственный университет (НИУ)» по адресу: 454080, Челябинск, пр. Ленина, 76, ауд. 1001.

С диссертацией можно ознакомиться в научной библиотеке и на сайте ФГАОУ ВО «Южно-Уральский государственный университет (НИУ)», а также по адресу: http://www.susu.ru/ru/dissertation/d-21229804/krutikova-irina-vladimirovna

Ваши отзывы на автореферат в двух экземплярах, подписанные и заверенные гербовой печатью, с указанием даты подписания просим выслать на имя ученого секретаря диссертационного совета Д 212.298.04 по адресу: 454080, Челябинск, пр. Ленина, 76, электронный адрес morozovsi@susu.ru.

Автореферат разослан «____» ____2017 г.

Ученый секретарь

Aufogel

С.И. Морозов

диссертационного совета, к. ф.-м. н., доцент

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В настоящее время все большее значение приобретает создание новых высокоплотных керамических материалов, созданных на основе чистых наноразмерных оксидов металлов. Благодаря использованию нанопорошков стало возможным появление нового поколения керамических материалов с уникальными оптическими характеристиками. Высокий интерес к нанопорошкам оксида иттрия, алюминия и иттрий-алюминиевого граната связан с тем, что они являются исходным материалом для спекания оптических керамик, обладающих высоким светопропусканием в видимой и ИК-области спектра, высокой термо- и химической стойкостью, и являющихся перспективным материалом для твердотельных лазеров, люминофоров и сцинтилляторов. Среди комплекса проблем нанопорошковой технологии одной из важнейших является оптимизация методов получения И компактирования порошков. Совершенствование именно этих стадий технологического процесса является предпосылкой высокого качества конечных керамических материалов.

Известно, что механические методы получения наночастиц при помощи размола и дробления не обеспечивают необходимой однородности распределения частиц по размерам и вносят загрязнения в измельчаемый материал. Наночастицы, полученные химическими методами, часто неоднородны по своей структуре и составу. Наночастицы, полученные при помощи пиролиза, загрязнены продуктами реакции и сильно агломерированы. В целом же, большинство немеханических методов получения наночастиц ограничены по производительности.

Одним из современных и перспективных методов получения наночастиц является метод испарения материала под действием лазерного излучения и последующей конденсации паров (лазерный синтез нанопорошков). В течение последних 20 лет в Институте электрофизики УрО РАН лазерный метод получения наночастиц успешно развивался сначала с помощью импульснопериодического CO_2 лазера¹, а затем волоконных иттербиевых лазеров². В данных работах показано, что метод позволяет получать слабо агрегированные сферические частицы со средним размером 10÷15 нм и узким диапазоном дисперсии, обеспечивая при этом высокую производительность и низкие энергозатраты. Использование нанопорошков удельные оксидов иттрия, алюминия и иттрий-алюминиевого граната, полученных испарением материала пол действием излучения иттербиевого волоконного лазера мишени предоставляет возможность, при соблюдении ряда дополнительных условий, получить керамические материалы с мелкозернистой структурой, существенно повысить плотность керамических материалов и снизить температуру спекания материала. В тоже время даже в случае слабо агломерированных сферических

¹ Осипов В.В., Котов Ю.А., Иванов М.Г., Саматов О.М., Смирнов П.Б., Применение мощного импульснопериодического СО₂-лазера с высоким КПД для получения наноразмерных порошков, Известия АН, сер. физич.,

периодического CO₂-лазера с высоким КПД для получения наноразмерных порошков, Известия АН, сер. физич., 1999, т.63, № 10, с.1968-1971.

² Ю.А. Котов, О.М.Саматов, М.Г. Иванов, А.М. Мурзакаев, А.И. Медведев, О.Р. Тимошенкова, Т.М. Демина, И.В. Крутикова (Вьюхина), Получение композиционных нанопорошков с помощью волоконного иттербиевого лазера и их характеристики, Журн. техн. физ. – 2011. – Т. 81, № 5. – С. 65-68.

наночастиц их компактирование является крайне сложной задачей. Агломерация нанопорошков, обусловленная высокой составляющей поверхностной энергии, приводит к формированию неоднородностей плотности внутри компакта и, при последующем спекании, пор внутри керамики. Применение существующих методов компактирования нанопорошков, полученных методом лазерного синтеза, весьма ограничено. Метод одноосного статического прессования, как и разработанная в ИЭФ УрО РАН уникальная технология магнито-импульсного прессования, позволяющая получать компакты с плотностью 0.7÷0.8 от теоретически возможной, демонстрируют хорошие результаты только в случае компактирования небольших дисковых образцов.

Одним из перспективных методов компактирования является метод шликерного литья дисперсий нанопорошков, позволяющий получать плотные однородные крупногабаритные компакты. При этом требования к шликеру хорошо известны: максимальная концентрация частиц в дисперсии при минимальной вязкости, что в случае наночастиц превращается в решение крайне сложной задачи. Для реализации технологии шликерного литья оказываются необходимы знания как о характеристиках дисперсной фазы (наноматериала): распределение частиц ПО размерам, структура поверхности, наличие активизирующих и загрязняющих примесей, обусловленных методом получения наночастиц, так и о влиянии этих параметров на устойчивость и реологические свойства дисперсий.

Что касается исследований свойств водных дисперсий наночастиц оксидов иттрия, то их число весьма ограничено. Возможно, это связано с тем, что применение наноразмерного оксида иттрия для получения устойчивых дисперсий вызывает трудности в силу физико-химических особенностей данного материала. При этом большинство публикаций относятся к нанопорошку Y₂O₃, полученному измельчением промышленного порошка, и субмикронному порошкуY₂O₃.

В целом, следует констатировать, что, не смотря на перспективность технологий лазерного синтеза нанопорошков и шликерного литья для получения прозрачных керамик, имеющихся на данный момент исследований недостаточно для разработки технологий получения низковязких концентрированных водных дисперсий нанопорошков оксидов иттрия и алюминия, полученных методом лазерного испарения материала.

<u>Цель диссертационной работы</u> заключается в разработке способов получения агрегативно устойчивых низковязких концентрированных водных дисперсий нанопорошков оксидов иттрия и алюминия, полученных методом лазерного испарения мишени.

Поставленная цель достигалась решением следующих задач:

1. Исследование характеристик нанопорошков оксидов иттрия, допированных ионами редкоземельных элементов Nd³⁺, Eu³⁺, и оксида алюминия, полученных методом испарения материала мишени под действием излучения иттербиевого волоконного лазера.

2. Исследование влияния различных дисперсантов на электрокинетические и реологические свойства водных дисперсий данных нанопорошков.

3. Оптимизация условий получения концентрированных низковязких водных дисперсий нанопорошков оксидов иттрия, алюминия и их смеси в стехиометрии иттрий-алюминиевого граната.

4. Разработка метода синтеза наноструктурированного прекурсора для получения иттрий-алюминиевого граната из органо-неорганических производных иттрия и алюминия, где один из компонентов исходного материала представляет собой нанопорошок оксида, а другой – органическое производное металла или его золь.

Научная новизна работы:

1. Впервые показано, что на поверхности полученного методом лазерного испарения нанопорошка оксида иттрия, допированного ионами редкоземельных элементов (Eu³⁺, Nd³⁺), , помимо адсорбированной воды и нитратов присутствуют $CO_3^{2^-}$ группы, а на поверхности нанопорошка оксида алюминия - NO_3^- и NO_2^- группы, образованные в результате хемосорбции газов CO_2 , NO_2 и NO.

2. Обнаружено, что прокаливание нанопорошков оксида иттрия при T > 750 °C на воздухе приводит к полному удалению карбонатных и нитрогрупп, однако, после охлаждения до комнатной температуры и экспонировании на воздухе при нормальных условиях происходит повторная сорбция H₂O и CO₂ с образованием карбонатов, при этом содержание сорбированного углерода прямо пропорционально удельной поверхности нанопорошка и составляет порядка 0.1 мг/м².

3. Впервые установлено, что водные дисперсии нанопорошков (Nd^{3+},Eu^{3+}) :Y₂O₃ и Al₂O₃, полученных методом лазерного синтеза, эффективно стабилизируются с помощью дисперсанта «Dolapix CE64». Оптимальным количеством дисперсанта является 1 мг на 1 м² нанопорошка, при этом, стабилизация дисперсий нанопорошков оксида алюминия достигается при pH< 3 и pH> 8, а дисперсий нанопорошков оксида иттрия – при pH> 8,5. Вязкость стабилизированной водной 60 масс. %-ой дисперсии Eu³⁺:Y₂O₃ не превышает 700 мПа·с, для Nd³⁺:Y₂O₃ и Al₂O₃ - 90 мПа·с при концентрации нанопорошка 60 масс. % и 50 масс. %, соответственно.

4. Впервые установлено, что водные дисперсии Nd^{3+} :Y₂O₃ эффективно стабилизируются с помощью полиаметакрилата аммония («Darvan CN»). Оптимальным количеством дисперсанта является диапазон концентраций 1÷1.5 мг/м². Максимальное абсолютное значение ζ-потенциала достигается при pH 10.5 и составляет ~24 мВ, при этом, вязкость для 55 масс. % водной дисперсии NDY не превышает 500 мПа·с при скорости сдвига ≥450 с⁻¹.

5. Впервые установлено, что при синтезе наноразмерных прекурсоров для получения иттрий-алюминиевого граната из органо-неорганических производных иттрия и алюминия, наименее агломерированным является прекурсор,

полученный с использованием наноразмерного порошка оксида алюминия и ацетилацетоната иттрия.

Практическая значимость работы:

диссертационной Результаты работы закладывают научные основы технологии высококонцентрированных получения водных суспензий нанопорошков оксидов иттрия и алюминия, полученных методом лазерного испарения материала. Разработанные способы стабилизации водных дисперсий данных нанопорошков использованы будут в коллоидных методах компактирования высокоплотных керамических материалов, ТОМ В числе оптической керамики.

Положения, выносимые на защиту:

1. На поверхности допированного ионами редкоземельных элементов (Eu³⁺, Nd³⁺) нанопорошка оксида иттрия, полученного методом лазерного испарения, помимо адсорбированной воды и углекислого газа присутствуют $CO_3^{2^-}$ и NO₃⁻ группы, а на поверхности нанопорошка оксида алюминия - NO₃⁻ и NO₂⁻ группы, образованные в результате хемосорбции газов CO₂, NO₂ и NO.

2. Прокаливание нанопорошков оксида иттрия при T > 750 °C на воздухе приводит к полному удалению карбонатных и нитрогрупп, однако, после охлаждения до комнатной температуры и экспонировании на воздухе при нормальных условиях происходит повторная сорбция H₂O и CO₂ с образованием карбонатов, при этом содержание сорбированного углерода прямо пропорционально удельной поверхности нанопорошка и составляет порядка 0.1 мг/м².

3. Водные дисперсии нанопорошков (Nd^{3+},Eu^{3+}) :Y₂O₃ и Al₂O₃, полученных методом лазерного синтеза, эффективно стабилизируются с помощью дисперсанта «Dolapix CE64». Оптимальным количеством дисперсанта является 1 мг на 1 м² нанопорошка, при этом, стабилизация дисперсий нанопорошков оксида алюминия достигается при pH< 3 и pH> 8, а дисперсий нанопорошков оксида иттрия – при pH> 8.5. Вязкость стабилизированной водной 60 масс. %-ой дисперсии Eu³⁺:Y₂O₃ не превышает 700 мПа·с, для Nd³⁺:Y₂O₃ и Al₂O₃ - 90 мПа·с при концентрации нанопорошка 60 масс. % и 50 масс. %, соответственно.

4. Водные дисперсии Nd^{3+} : Y₂O₃ эффективно стабилизируются с помощью полиаметакрилата аммония («Darvan CN»). Оптимальным количеством дисперсанта является диапазон концентраций 1÷1,5 мг/м². Максимальное абсолютное значение ζ-потенциала достигается при pH 10.5 и составляет ~24 мB, при этом, вязкость для 55 масс. % водной дисперсии NDY не превышает 500 мПа·с при скорости сдвига ≥450 с⁻¹.

5. При синтезе наноразмерных прекурсоров для получения иттрийалюминиевого граната из органо-неорганических производных иттрия и алюминия, наименее агломерированным является прекурсор, полученный с использованием наноразмерного порошка оксида алюминия и ацетилацетоната иттрия.

<u>Личный вклад автора</u> заключается в выполнении экспериментальной работы, в том числе, подготовке дисперсий нанопорошков, измерении электрокинетического потенциала водных дисперсий, измерении вязкости дисперсий, проведение спектрофотометрических измерений, а также, обработке и интерпретации полученных результатов. Автором проведен анализ полученных спектров инфракрасной спектроскопии и их идентификация.

Степень достоверности полученных результатов:

Обоснованность и достоверность результатов исследования определяется использованием современных аттестованных методик и поверенных средств измерений. Полученные в работе результаты демонстрируют хорошее согласие с результатами экспериментов других исследователей и не противоречат современным теоретическим представлениям.

Апробация результатов работы

Основные результаты диссертации опубликованы в 18 печатных работах, в том числе в 7-ми статьях в рецензируемых научных журналах из перечня ВАК и 11 тезисах докладов, сделанных на Российских и международных конференциях.

Результаты работы доложены и обсуждены на российских (Санкт-Петербург, 2008, 2010; Москва, 2009; Екатеринбург, 2009, 2011) и международных конгрессах, конференциях (Польша, 2013, 2014; Украина, 2013), симпозиумах (Германия, 2010) и школах (Звенигород, 2010, 2012), а так же на семинарах ИЭФ УрО РАН.

Структура и объем диссертации

Диссертация состоит из введения, пяти глав, заключения и списка литературы. Диссертация изложена на 131 странице машинописного текста, включая 38 рисунков, 11 таблиц, 24 формулы, 13 схем и список литературы из 157 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность выбранной темы диссертационной работы, сформулированы цель и задачи работы, защищаемые положения. Приведены научная новизна работы, практическая значимость полученных результатов, личный вклад автора, структура диссертации.

В первой главе описано современное состояние проблемы компактирования керамических материалов. Проанализированы основные требования к исходным материалам для синтеза керамических материалов методом шликерного литья. Рассмотрены факторы агрегативной устойчивости, а также способы стабилизации нанопорошковых водных дисперсий для шликерного литья керамических материалов.

Во второй главе дана характеристика исходных материалов, дисперсантов, используемых в работе. Приведены методики приготовления водных дисперсий

нанопорошков оксидов иттрия и алюминия, экспериментальные методы исследования.

В качестве исходного материала для получения нанопорошка были использованы коммерческие порошки микронного размера (5÷10 мкм) Y_2O_3 марки ИтО-Люм-Э (г. Верхняя Пышма), Nd_2O_3 с чистотой 99.99 %, Eu_2O_3 (99.99%), Al_2O_3 (99.99%). Нанопорошки Y_2O_3 , допированного ионами редкоземельных металлов (Nd^{3+} , Eu^{3+}), Al_2O_3 , а также TiO₂, SiO₂, ZrO₂, Sc₂O₃, использованные в настоящей работе как добавки к водным дисперсиям нанопорошка оксида иттрия были получены методом испарения оксидов и их смесей в воздухе под действием излучения иттербиевого волоконного лазера.

В работе были использованы следующие стабилизаторы дисперсий нанопорошков:

Цитрат натрия (Alfa Aesar, Mr = 294.10 г/моль), цитрат этаноламмония «Dolapix CE64» (Zschimmer&Schwarz, Mr = 320 г/моль), полиакрилат аммония «Dispex A40» (Ciba Specialty Chemicals, Mr = $4*10^3$ г/моль), полиметакрилат аммония «Darvan C-N» (R.T. Vanderbilt Company, Mr = $1.6*10^4$ г/моль), полиакриловая кислота (ПАК) (Alfa Aesar, Mr = $24*10^4$ г/моль), полиакриловая кислота (ИОС УрО РАН, Mr = $1*10^4$ г/моль)

Экспериментальные методы исследования нанопорошков и их водных дисперсий: метод электронной микроскопии (трансмиссионный микроскоп JEM 2100 (JEOL, Япония), растровый микроскоп LEO 982 (Carl-Zeiss, Германия)); рентгенофазовый анализ (РФА) (дифрактометр D8 Discover Bruker, Германия); термический анализ масс-спектрометрией комплексный с (установка термоанализа с квадрупольным масс- спектрометром NETZSCH STA 409 PC/ QMS 409 C); ИК-Фурье спектроскопия (Фурье-спектрометр Perkin Elmer FT-IR Spectrometer "Spectrum 100-74712"); электроакустический метод измерения ζпотенциала (анализатор DT-300 (Dispersion Technology, США)); метод статического рассеяния света (анализатор Horiba LA-950, Япония); метод динамического рассеяния света (анализатор Malvern Zetasizer Nano ZS, Великобритания); метод определения динамической вязкости (вискозиметр Haake VT550); метод спектрофотометрического анализа (УФ спектрофотометр UV-2401 (Shimadzu, Япония)).

Третья глава посвящена исследованию свойств нанопорошков Y₂O₃, допированного ионами редкоземельных металлов (Nd³⁺, Eu³⁺), Al₂O₃, полученных методом лазерного испарения материала под действием иттербиевого волоконного лазера.

Для производства вышеуказанных нанопорошков, а также TiO₂, SiO₂, ZrO₂, Sc₂O₃, использованных в качестве добавок в дисперсиях, применялся волоконный иттербиевый лазер ЛК-1 производства НТО «ИРЭ-Плюс» (г. Фрязино). Результаты экспериментальных работ по получению нанопорошков легли в

8

основу разработки способа повышения эффективности процесса получения нанопорошков неметаллов с помощью испарения вещества излучением лазера³.

Наночастицы $Nd^{3+}:Y_2O_3$ (1 масс. % Nd^{3+}), $Eu^{3+}:Y_2O_3$ (5 масс. % Eu^3) (рис. 1, А, Б) состоят из слабо агломерированных сферических частиц со средним размером 29 и 17 нм, соответственно. Нанопорошок Al_2O_3 -n (рис. 1, В) представляет собой неагломерированные сферические частицы со средним диаметром 20 нм. На основе обработки микрофотографий построены гистограммы численного распределения частиц по размерам.

A

Б

³ Способ повышения эффективности процесса получения нанопорошков неметаллов с помощью испарения вещества излучением лазера. Иванов М.Г., Калинина Е.Г., Крутикова И.В. РФ Патент на изобретение, заявка № 2016115415, приоритет 20.04.2016.

B

Рисунок 1. Микрофотография и численное распределение частиц по размерам (w= $n_i/\sum_i n_i$, где n_i – количество частиц в *i*-ой фракции): А - Nd³⁺:Y₂O₃, Б - Eu³⁺:Y₂O₃, В - Al₂O₃-n.

По данным рентгенофазового анализа (РФА) было установлено, что частицы основной фракции нанопорошка Nd³⁺:Y₂O₃ имеют моноклинную γ -Y₂O₃ фазу с постоянными решетки: a=0,13922±0,00005, b=0,3940±0,0002 и c=0,8615±0,0004 нм, β =(99,93±0,08)^o при C_{Nd}≈ 1 моль. %. Eu³⁺:Y₂O₃ имеет моноклинную кристаллическую решетку с параметрами ячейки: a = 13.93(2) Å, b = 3.498(3) Å, c = 8.619(7) Å, β = 100.20°. РФА нанопорошка Nd³⁺:Y₂O₃ показал, что после отжига нанопорошок представляет собой твердый раствор неодима в кубическом оксиде иттрия. Al₂O₃-n состоит из γ -Al₂O₃, имеющего структуру шпинели с параметром ячейки a=7.90±0.06Å, область когерентного рассеяния (OKP) составляет 9,1±0,3 нМ.

По данным термогравиметрического анализа в сочетании с дифференциальной сканирующей калориметрией (ТГА-ДСК) нанопорошка Nd³⁺:Y₂O₃ (рис. 2, A), было установлено, что экзотермическая реакция фазового перехода происходит в диапазоне температур 900÷950°С. Порошок содержит воду и углекислый газ. Основная потеря массы – 5.40 % в диапазоне 200÷400 °С связана с удалением воды и углекислого газа.

Рисунок 2. ТГ-ДСК с масс-спектрометрической идентификацией продуктов нанопорошков А) Nd³⁺:Y₂O₃, Б) Eu³⁺:Y₂O₃.

Из термограммы нанопорошка Eu^{3+} : Y₂O₃ (рис. 2, Б) следует, что наибольшее изменение массы образца (общая потеря массы – 8.12%) происходит в диапазоне 200÷500 °C и также связано с удалением значительного количества H₂O и CO₂.

Наличие воды и газов подтверждается данными ИК-Фурье спектроскопии (рис. 3, А). На ИК-спектре нанопорошка Eu^{3+} : Y₂O₃ видны широкие полосы поглощения в области 3500÷3000 и 1635 см⁻¹, которые соответствуют валентным колебаниям OH⁻-групп и деформационным колебаниям H – O – H. Валентные колебания CO₃²⁻ проявляются в виде широких полос при 1515 (несимметричные), 1398 и 1077 см⁻¹ (симметричные), неплоские деформационные колебания CO₃²⁻ проявляются к колебаниям CO₃²⁻ проявляются в виде широких полос при 1515 (несимметричные), 1398 и 1077 см⁻¹ (симметричные), неплоские деформационные колебания CO₃²⁻ проявляются к колебаниям СО₃²⁻ проявляются в виде цироких полос при 1515 (несимметричные), 1398 и 1077 см⁻¹ (симметричные), неплоские деформационные колебания CO₃²⁻ проявляются в колебаниям СО₃²⁻ проявляются в колебания сос при 563 см⁻¹ относится к колебаниям связи Y – O.

Помимо воды и углекислого газа среди уходящих газов при ТГА наблюдались следы оксидов азота NO и N₂O, что может говорить о наличии нитрогрупп на поверхности наночастиц, полученных плазменными методами. ИК-Фурье спектральный анализ (рис. 3, А) нанопорошка Eu³⁺:Y₂O₃, полученного из лазерной плазмы, показал наличие узкой полосы 1384 см⁻¹, соответствующей симметричным валентным колебаниям NO₃⁻.

Прокаленные при температурах от 750 °C (удельная поверхность нанопорошка после отжига $S_{BET} = 35.3 \text{ m}^2 \cdot \Gamma^{-1}$) до 1400 °C ($S_{BET} = 2.6 \text{ m}^2 \cdot \Gamma^{-1}$) (рис. 3, Б) нанопорошки после охлаждения до комнатной температуры нитрогруппы не содержат, однако при контакте с атмосферой сорбируют H₂O и CO₂, что приводит к образованию карбонатов иттрия на поверхности наночастиц.

Рисунок 3. Характерные ИК-спектры нанопорошков Eu³⁺:Y₂O₃ (A) и Eu³⁺:Y₂O₃, прокаленных при температурах 750 °C, 900 °C, 1200 °C и 1400 °C (Б).

Для нанопорошков Eu^{3+} :Y₂O₃, прокаленных при 750, 900, 1200 и 1400 °C и экспонированных на воздухе в течение 10 мин после охлаждения до комнатной температуры, было измерено содержание углерода, которое линейно зависит от удельной поверхности нанопорошка и составляет порядка 0.1 мг/м².

Термоанализ нанопорошка Al_2O_3 -п (рис. 4, A) показывает, что при нагревании порошка также, как и в случае оксидов иттрия выделяются H_2O , CO_2 и следы NO₂. Основная потеря массы Al_2O_3 при нагревании происходит в диапазоне 200-500 °C и составляет порядка 3 %. Согласно результатам термоанализа, экзотермическая реакция фазового перехода для нанопорошка Al_2O_3 -п происходит в диапазоне температур 1200÷1300 °C и соответствует кристаллизации α - Al_2O_3 .

Рисунок 4. Кривые ТГА-ДСК с масс-спектрометрической идентификацией продуктов (А) и характерный ИК-спектр (Б) нанопорошка Al₂O₃.

В ИК-спектре нанопорошка оксида алюминия (рис. 4, Б) как и в случае оксидов иттрия присутствуют широкие полосы поглощения при 3500-3000 см⁻¹ и 1635 см⁻¹, относящиеся к валентным колебаниям ОН⁻ групп и деформационным CM^{-1} . колебаниям H–O–H соответственно, И узкая полоса при 1384 соответствующая симметричным валентным колебаниям NO₃, что подтверждает наличие нитрата алюминия. Дополнительно, в ИК-спектре Al₂O₃ появляется узкая полоса при 1275 см⁻¹, соответствующая NO₂⁻. Образование нитрита алюминия в нанопорошке. полученном методом лазерного испарения. связано c неравновесными условиями в факеле эрозионной плазмы, перемешивающейся с воздухом, где происходит образование наночастиц. В условиях дефицита кислорода в лазерном факеле происходит образование NO (подробно описано в диссертационной работе), который взаимодействуя с оксидами металлов, образует нитрит. В порошках У2О3, как было отмечено выше, нитритов не наблюдается. В равновесных условиях нитрит алюминия на поверхности нанопорошка не обнаружен.

Важным фактом является отсутствие в ИК-спектре нанопорошка Al_2O_3 полосы поглощения групп $CO_3^{2^{\circ}}$ (рис. 4, Б). Это свидетельствует о том, что в случае оксида алюминия происходит только физическая адсорбция углекислого газа, так как амфотерный оксид алюминия не образует карбонатов при сорбции CO_2 с водой из воздуха. Как следствие, в нанопорошке Al_2O_3 , прокаленном при 750÷1400 °C, содержание углерода составило 0,02 мг•м⁻², что в пять раз меньше, чем в нанопорошке Y_2O_3 , прокаленном в тех же условиях.

В четвертой главе рассматривается стабилизация водных дисперсий нанопорошков Eu^{3+} : Y_2O_3 и Nd^{3+} : Y_2O_3 с применением анионных коммерческих дисперсантов: «Dolapix CE64», «Darvan C-N», «Dispex A40», и цитрата натрия. Основываясь на измерениях величины ζ-потенциала, позволяющих провести оценку стабильности дисперсной фазы системы, выбраны оптимальные дисперсанты, их концентрации и уровни pH дисперсий, проведены измерения вязкости концентрированных водных дисперсий наноразмерных порошков Eu^{3+} : Y_2O_3 , Nd^{3+} : Y_2O_3 , Al_2O_3 и смеси Y_2O_3 + Al_2O_3 в стехиометрии иттрий-алюминиевого граната (3:5).

Стабилизация водных дисперсий нанопорошка Eu³⁺:Y₂O₃.

Исходная водная дисперсия Eu^{3+} : Y₂O₃ характеризуется основной средой (pH \approx 9,5) и имеет отрицательное значение ζ -потенциала.

Были получены зависимости агрегатов размера наночастиц И электрокинетического потенциала ζ от рН для 0,1%-ных водных дисперсий Eu³⁺: Y₂O₃ (рис. 5, A). В изоэлектрической точке (ИЭТ), при pH \approx 8,4, адсорбция ионов H⁺ и OH⁻ на поверхности частиц эквивалентна, что обусловливает нулевое значение ζ -потенциала. В области pH 10÷11 количество гидроксилов, адсорбированных на поверхности наночастиц, достигает максимума наблюдается минимум значения ζ-потенциала дисперсии (-40 мВ). Размер

агрегатов, постепенно уменьшающийся при повышении pH, становится минимальным.

Рисунок 5. Зависимость ζ-потенциала и размера агрегатов частиц от pH для исходной 0,1 масс. %-ной водной дисперсии нанопорошка Eu³⁺:Y₂O₃(A) и с добавлением - *цитрат натрия* (концентрация - 1 мг/м²) (Б).

Добавление *цитрата натрия* в водную дисперсию приводит к смещению ИЭТ (pH \approx 6.3) в сторону увеличения кислотности по сравнению с дисперсией без добавок (рис. 5, Б). Водная дисперсия Eu³⁺:Y₂O₃ с добавкой данного стабилизатора является агрегативно устойчивой уже в области pH>7, где значение ζ-потенциала изменяется от (-40) до (-60) мВ. Отрицательные значения ζ-потенциала обусловлены адсорбцией цитрат-ионов. Однако, в случае применении водных дисперсий для изготовления оптической керамики, присутствие катионов натрия не допустимо, в силу того, что натрий приводит к формированию примесной фазы и не может быть удален из компакта путем прокаливания.

Учитывая эффективность лимонной кислоты как стабилизатора водных дисперсий нанопорошков, был применен дисперсант, содержащий в своем составе схожие с ней компоненты. Одним из таких дисперсантов является коммерческий дисперсант «Dolapix CE64», представляющий собой смесь поверхностного трис((2-гидроксиэтил) аммоний) цитрат, лимонной кислоты, этиленгликоля и пропиленкарбоната.

14

Рисунок 6. Зависимость ζ-потенциала и размера агрегатов частиц от pH для 0,1%ной водной дисперсии нанопорошка Eu³⁺:Y₂O₃ в присутствии дисперсанта: A) «Dolapix CE64», 1 мг/м², Б) «Dolapix CE64» с различной концентрацией.

Влияние дисперсанта «Dolapix CE64» на поведение частиц в дисперсии (рис. 6 ,A) схоже с действием цитрата натрия. Добавление дисперсанта в количестве 1 мг/м² (в расчете на площадь поверхности нанопорошка) снижает ζ-потенциал дисперсии, а положение ИЭТ смещается к значению 6,5. Сдвиг ИЭТ является результатом адсорбции отрицательно заряженных цитрат-ионов на положительно заряженной поверхности наночастиц оксида иттрия. Высокие абсолютные значения электрокинетического потенциала $|\zeta|>40$, требуемые для получения стабильной дисперсии, достигаются при pH>8,5. В диапазоне концентраций «Dolapix CE64» от 0,5 мг/м² до 4 мг/м² (рис. 6, Б) повышение концентрации до 1 мг/м² приводит к небольшому увеличению ζ-потенциала, и размер частиц становится наименьшим. Дальнейшее увеличение до 4 мг/м² не изменяет ζпотенциал, а частицы начинают агрегировать.

Помимо «Dolapix CE64», было исследовано влияние анионного дисперсанта полиакриловой кислоты (ПАК) с MM=24·10⁴ с концентрацией 1 мг/м² на ζпотенциал водной дисперсии Eu³⁺:Y₂O₃ (рис. 7). Как и в предыдущих случаях добавление ПАК смещает ИЭТ к pH=6,5. Существенное снижение агрегации наночастиц наблюдается при значениях pH>8. По сравнению с «Dolapix CE64» водная дисперсия Eu³⁺:Y₂O₃ в присутствии ПАК стабилизируется при больших значениях pH>9, где ζ-потенциал принимает значения ~ (- 45)÷(-50) мВ.

Рисунок 7. Зависимость ζ -потенциала от pH в 0,1 %-ной водной дисперсии нанопорошка Eu³⁺:Y₂O₃ с добавлением ПАК (MM=24·10⁴).

Для 30 масс. % и 60 масс. % (23 об. %) водных дисперсий Eu^{3+} : Y₂O₃ в присутствие «Dolapix CE64» с концентрацией 1 мг/м² были построены кривые вязкости в зависимости от скорости сдвига (рис. 8).

Рисунок 8. Зависимость вязкости 60 масс. % (23 об. %) и 30 масс. % водных дисперсий нанопорошка Eu^{3+} : Y₂O₃ с добавлением «Dolapix CE64» (1 мг/м²) от скорости сдвига, pH=10, T=25 °C.

Водная дисперсия с содержанием 30 масс. % сухого вещества имеет характер близкий к поведению ньютоновской жидкости. Минимальное значение вязкости достигает ~5,8 мПа·с при скорости сдвига 542 с⁻¹. С увеличением концентрации нанопорошка в дисперсии до 60 масс. % (рис. 8), вязкость повышается, при этом минимальное значение вязкости водной дисперсии Eu³⁺:Y₂O₃ достигает ~ 0,2 Па·с при скорости сдвига 250÷550 с⁻¹, что достаточно для использования дисперсии в шликерном литье.

Стабилизация водных дисперсий нанопорошка Nd³⁺:Y₂O₃.

Исследование стабилизации водных суспензий наночастиц оксида иттрия с помощью полиакрилата аммония было проведено для нанопорошка Nd³⁺:Y₂O₃.

Были получены зависимости ζ-потенциала от pH с добавлением полиакрилата аммония («Dispex A40») при различной концентрации дисперсанта (рис. 9). При минимальном количестве дисперсанта (рис. 9, *кривая 1*) добавление водного раствора аммиака в дисперсию первоначально уменьшает абсолютное значение ζ-потенциала, а затем увеличивает. При взаимодействии ПАК со слабым основанием - гидроксидом аммония происходит реакция нейтрализации с образованием аммонийной соли.

Рисунок 9. Зависимость ζ-потенциала от pH для водных суспензий нанопорошка Nd³⁺:Y₂O₃ при различной концентрации – «Dispex A40».

С увеличением концентрации 2-5)(кривые дисперсанта В возрастает водной дисперсии абсолютная величина ζ-Наибольшее потенциала. абсолютное значение соответствует интервалу pН $10.2 \div 10.4$ при концентрации «Dispex A40» равной 1,5 мг/м². Было показано. что добавка наноразмерного Al_2O_3 В концентрации 1 масс. % от массы $Nd^{3+}:Y_2O_3$ меняет величину ζпотенциала сторону В его увеличения (кривая 5), при этом сохраняется общая тенденция зависимости ζ-потенциала от рН.

В работе было исследовано влияние и других наноразмерных оксидов: SiO₂, ZrO₂, Sc₂O₃, TiO₂, взятых в том же количестве, что и Al₂O₃, на характер зависимости ζ -потенциала водной дисперсии Nd³⁺:Y₂O₃ при изменении pH среды. Данные оксиды могут быть использованы в качестве спекающих добавок для получения высокоплотной керамики оксида иттрия. Концентрация дисперсанта составляла 1 мг/м². Было отмечено, что характер зависимости ζ -потенциала от pH при добавлении данных оксидов примерно одинаков и не оказывает какого-либо принципиально различного влияния на устойчивость водных дисперсий Nd³⁺:Y₂O₃, в тоже время, наименьшая величина ζ -потенциала достигается при добавлении оксида циркония при pH=10,3.

Среди других анионных коммерческих дисперсантов были рассмотрены «Dispex A40» и «Darvan C-N», взятые в той же концентрации - 1 мг/м² из расчета на поверхность порошка (рис. 10, A).

Рисунок 10. Зависимость ζ-потенциала от pH среды водной дисперсии Nd³⁺:Y₂O₃ с добавлением дисперсанта: A) «Dispex A40» и «Darvan C-N», Б) «Dolapix CE64» с концентрацией 1 мг/м².

В случае применения «Dispex A40», с ростом pH абсолютное значение ζпотенциала достигает своего минимума при pH=11,15 (рис. 10 , A). При добавлении «Darvan C-N» с увеличением pH минимальное значение ζ-потенциала (-24 мВ) достигается при pH=10,5.

Учитывая эффективность дисперсанта «Dolapix CE64» при стабилизации водной дисперсии Eu^{3+} :Y₂O₃, для водных дисперсий Nd³⁺:Y₂O₃ было также изучено влияние данного дисперсанта на ζ-потенциал (рис. 10, Б). Отмечено, что значение ζ-потенциала находится в области (-28)÷(-30) мВ и при изменении кислотности среды в исследуемой области практически не изменяется.

На характер действия дисперсантов оказывает влияние также и выбор титранта при изменении pH среды. В работе представлены сравнительные данные по использованию гидроксида аммония (основание средней силы, $pK_b = 4.20$) и сильного основания - гидроксида тетрабутиламмония ((C_4H_9)₄NOH). Использование в качестве гидроксида более сильного основания существенно увеличивает абсолютную величину ζ-потенциала.

Для водной дисперсии с содержанием нанопорошка Nd^{3+} :Y₂O₃ 15 масс. % при концентрации ПАК (MM=1·10⁴ Да) равной 1 мг/м² была построена зависимость вязкости от pH среды (рис. 11). Оптимальные значения pH для получения низковязкой водной дисперсии оксида иттрия находятся в интервале 10,5÷11,5, это объясняется основным характером оксида иттрия и хорошо согласуется с результатами измерений ζ-потенциала.

Рисунок 11. Зависимость вязкости 15%-ной дисперсии $Nd^{3+}:Y_2O_3$ от pH. Концентрация ПАК (MM =1·10⁴ Да) равна 1 мг/м².

Скорость сдвига 7,61 с⁻¹, Т=25 °С.

Основываясь на вышеуказанных результатах, была получена кривая зависимости вязкости для 55 масс. % (19,5 об. %) водной дисперсии $Nd^{3+}:Y_2O_3$ с добавлением наноразмерного ZrO₂ в количестве 1 масс. % от содержания $Nd^{3+}:Y_2O_3$, в качестве дисперсанта – «Darvan C-N» с концентрацией 1 мг/м² в расчете на поверхность порошка (рис. 12). Показатель кислотности среды составил 11, доведенный титрованием дисперсии (C₄H₉)₄NOH.

Рис. 12. Зависимость вязкости 55 масс. % водной дисперсии NDY с добавкой ZrO_2 (1 масс. % от NDY) от скорости сдвига, дисперсант – «Darvan C-N» (1 мг/м²), pH=11, ((C₄H₉)₄NOH), T=25 °C.

Согласно полученной кривой вязкости при средних скоростях сдвига 55 масс. %-ая водная дисперсия Nd³⁺:Y₂O₃ является псевдопластической жидкостью, при больших скоростях сдвига (≥450 с⁻¹) вязкость снижается. Снижение вязкости при увеличении скорости сдвига говорит о разрушении агрегатов частиц при сдвиговом напряжении.

Рисунок 13. Зависимость вязкости 60 масс. % водной дисперсии NDY от скорости сдвига, дисперсант – «Dolapix CE64» (1 мг/м²), pH=11, ((C₄H₉)₄NOH), T=25 °C.

Низковязкие водные дисперсии $Nd^{3+}:Y_2O_3$ в присутствие «Dolapix CE64» были получены при максимальном содержании сухого вещества – 60 масс.%. (23 об. %) (рис. 13). Наименьшее значение вязкости достигается при больших скоростях сдвига ($\geq 1500 \text{ c}^{-1}$) и не превышает 25 мПа·с. Полученные значения вязкости ниже по сравнению с водной дисперсией, стабилизированной «Darvan C-N» (MM=1.6·10⁴ Да).

Стабилизация водных дисперсий нанопорошка Al₂O₃.

Для водных дисперсий нанопорошка Al_2O_3 в присутствии «Dolapix CE64» с концентрацией 1 мг/м², при pH ниже 3 и выше 8 агрегация наночастиц минимальна (рис. 14). Отрицательные значения ζ -потенциала связаны с адсорбцией цитрат-ионов на поверхности наночастиц оксида алюминия. Максимальное абсолютное значение ζ -потенциала достигает (-60) мВ области pH=10÷11, что говорит о высокой агрегативной устойчивости дисперсий.

Рисунок 14. Зависимость размера агрегатов частиц и ζ-потенциала от pH для 0,1% водной дисперсии нанопорошка Al₂O₃ в присутствии «Dolapix CE64» (1 мг/м²).

Согласно кривой зависимости вязкости от скорости сдвига для 50 масс. % (16,6 об. %) водной дисперсии Al₂O₃-n, стабилизированной «Dolapix CE64» (рис.

15, А), для дисперсии также характерна псевдопластичность, как и для дисперсий Nd^{3+} : Y₂O₃. Агрегаты частиц Al₂O₃ при сдвиговом напряжении разрушаются, что способствует увеличению скорости течения дисперсии. Значение вязкости не превышает 90 мПа·с.

Для смеси порошков Y_2O_3 и Al_2O_3 в стехиометрии иттрий-алюминиевого граната (ИАГ, $Y_3Al_5O_{12}$, Y_2O_3 : Al_2O_3 =3:5) значение вязкости не превышает 80 мПа·с при любых скоростях сдвига (рис. 15, Б). Общий характер течения водной дисперсии смеси аналогичен течению водных дисперсий каждого из компонентов в отдельности.

Рисунок 15. Зависимость вязкости 50 масс. %-ой водной дисперсии нанопорошка Al₂O₃ (A) и 55 масс. %-ой водной дисперсии смеси порошков Y₂O₃ и Al₂O₃ в стехиометрии Y₃Al₅O₁₂ (Б) от скорости сдвига, дисперсант - «Dolapix CE64» (1 MГ/M²), T=25 °C.

B пятой главе приведены результаты экспериментов синтезу по наноразмерных прекурсоров в стехиометрии иттрий-алюминиевого граната, полученных из органо-неорганических производных иттрия и алюминия, где один из компонентов исходного материала представляет собой нанопорошок оксида, а другой – органическое производное металла или его золь. При этом основное внимание уделялось морфологии полученного прекурсора, для того, чтобы установить какой из методов позволяет получить наименее агломерированные наночастицы, т.е. такие, которые в ходе последующего помола, компактирования и спекания могли бы привести к получению прозрачной керамики итриийалюминиевого граната (ИАГ).

Объектами исследования были образцы прекурсоров, изготовленных в стехиометрии иттрий-алюминиевого граната (Y : Al = 3 : 5). Для получения прекурсоров были использованы нанопорошки Al_2O_3 и $Nd^{3+}:Y_2O_3$ (Y₂O₃, допированный 1 моль. % Nd₂O₃), полученные методом испарения материала под действием излучения волоконного иттербиевого лазера.

Используемые нанопорошки $Nd^{3+}:Y_2O_3$ (NDY) и Al_2O_3 имели удельные площади поверхности 56 м²/г и 50 м²/г, соответственно. Содержание летучих примесей в нанопорошке NDY составляло 5,5 масс.%, в $Al_2O_3 - 4,8$ %.

Прекурсор в стехиометрии иттрий-алюминиевого граната готовился несколькими способами, подробное описание которых приведено в диссертационной работе.

Все прекурсоры *П1-П8* были прокалены при 700 °С в течение 3 ч. Результаты измерения удельных поверхностей представлены в Таблице 1.

№ п./п.	Шифр	Исходные реагенты	S, м ² /г
1	Π1	Суспензия NDY + золь <i>A1</i>	69.0
2	П2	Суспензия NDY + золь $A2 + NH_3$	38.9
3	П3	Суспензия NDY + золь $A2 + (NH_2)_2CO$	107.9
4	П4	$NDY + Al(OCH(CH_3)CH_2CH_3)_3$	69.0
5	П5	$NDY + Al(CH_3COCHCOCH_3)_3$	44.6
6	Пб	$NDY + Al(NO_3)_3 \cdot 9H_2O$	72.2
7	П7	$Y(CH_3COCHCOCH_3)_3 + Al_2O_3$	53.9
8	П8	Y(CH ₃ COCHCOCH ₃) ₃ + Al(CH ₃ COCHCOCH ₃) ₃	13.0

Таблица 1. Удельные площади поверхности прекурсоров ИАГ

Как видно из *Таблицы* 1, большинство прекурсоров имеют достаточно высокие удельные площади поверхности, за исключением прекурсора $\Pi 8$. Анализ микрофотографий (рис. 16) показал, что образец $\Pi 8$, полученный обжигом индивидуальных органических производных металлов, достаточно сильно агрегирован. Наименее агрегированным является прекурсор $\Pi 7$, полученный из наноразмерного Al₂O₃ и Y(CH₃COCHCOCH₃)₃ (рис. 16).

Рисунок 16. Микрофотографии прекурсоров ИАГ: А— П1, Б — П3, В — П5, Г — П7, Д — П8

Проведенные исследования позволяют заключить, что наилучшим способом, приводящим к получению слабо агломерированного прекурсора с высокой удельной площадью поверхности, является обжиг стехиометрической смеси нанопорошка оксида алюминия и ацетилацетоната иттрия.

В заключении описаны основные результаты и выводы:

1. На поверхности чистого и допированного ионами редкоземельных элементов (Eu³⁺, Nd³⁺) нанопорошка оксида иттрия, полученного методом лазерного испарения, помимо адсорбированной воды присутствуют CO₃²⁻ и NO₃⁻ группы, а на поверхности нанопорошка оксида алюминия - NO₃⁻ и NO₂⁻ группы, образованные в результате хемосорбции газов CO₂, NO₂ и NO. Прокаливание нанопорошков при *T*> 750 °C на воздухе приводит к полному удалению этих групп.

Однако, после охлаждения до комнатной температуры нанопорошки сорбируют из воздуха воду и углекислый газ, при этом на поверхности наночастиц оксида иттрия образуется карбонат иттрия. Наночастицы Al₂O₃ карбонатов не образуют. Для нанопорошков оксидов иттрия и алюминия

содержание углерода, адсорбированного с CO₂, линейно зависит от удельной поверхности нанопорошка, и составляет порядка 0,1 мг/м² – в случае оксида иттрия, и 0,02 мг/м² – в случае оксида алюминия.

2. Водные дисперсии нанопорошков оксида иттрия и алюминия эффективно стабилизируются с помощью дисперсанта «Dolapix CE64». Стабилизация дисперсий оксида алюминия достигается при pH< 3,5 и pH> 8, водных дисперсий оксида иттрия – при pH> 7,5. При этом максимальное абсолютное значение ζ -потенциала для дисперсий оксида иттрия достигает |-55|мВ и для дисперсий

оксида алюминия -|-60|мВ.

3. Водные дисперсии оксида иттрия эффективно стабилизируются с помощью полиметакрилата аммония (NH₄ПМАК) под торговым названием «Darvan C-N». Оптимальным количеством «Darvan C-N» является диапазон концентраций $1\div1,5$ мг/м². Максимальное абсолютное значение ζ -потенциала при pH=10,5 составляет ~24 мВ.

4. Оптимальный интервал значений pH дисперсий для обеспечения наименьшей вязкости $10,5\div11,5$. Наибольшее значение вязкости для стабилизированной водной 60 масс. %- ой дисперсии NDY не превышает 100 мПа·с, для 50 масс. %- ой дисперсии $Al_2O_3 - 90$ мПа·с. Наибольшее значение вязкости для смеси порошков Y_2O_3 и Al_2O_3 в стехиометрии иттрий-алюминиевого граната также не превышает 80 мПа·с.

5. При синтезе наноразмерных прекурсоров для получения иттрийалюминиевого граната из органо-неорганических производных иттрия и алюминия, наименее агломерированным является прекурсор, полученный с использованием наноразмерного порошка оксида алюминия и ацетилацетоната иттрия.

Список публикаций, опубликованных по теме диссертации

1. Оптическая Nd³⁺:Y₂O₃ керамика из нанопорошков, спрессованных статическим давлением с ультразвуковым воздействием/ В.В. Осипов [и др.] // Российские нанотехнологии. - 2008. - №7-8. - С. 474 – 480.

2. Получение композиционных нанопорошков с помощью волоконного иттербиевого лазера и их характеристики/ Ю.А. Котов [и др.] // Журн. техн. физ. – 2010. – Т. 81, № 5. – С. 65-68.

3. Электрокинетические свойства нанопорошков NDY в водных суспензиях в присутствии поликарбоксилатов/ И.В. Крутикова (Вьюхина) [и др.] // Перспективные материалы. – 2011. - №4. - С.62-69.

4. Ivanov M. Growth of optical grade yttrium oxide single crystal via ceramic technology/ M. Ivanov, V. Khrustov, I. Vyukhina // Optical materials - 2012. - Vol. 34, N 6. - P. 955-958.

5. Разработка методов получения наночастиц Nd:YAG/ И.С. Пузырев [и др.] // Физика и химия стекла. – 2012. - Т.38, №4. - С. 574-578.

6. Пузырев И.С. Физико-химические свойства нанопорошков Al₂O₃ и Y₂O₃, полученных методом лазерного синтеза, и их водных дисперсий/ И.С. Пузырев, М.Г. Иванов, И.В. Крутикова// Известия Академии наук. Серия химическая. – 2014. - №7. - С. 1504-1510.

7. Highly transparent Yb-doped $(La_xY_{1-x})_2O_3$ ceramics prepared through colloidal methods of nanoparticles compaction/ Ivanov M. [et al.] // J. Eur. Ceram. Soc. -2016. - Vol. 36., Is. 16. -P. 4251-4259.

8. Способ повышения эффективности процесса получения нанопорошков неметаллов с помощью испарения вещества излучением лазера, Иванов М.Г., Калинина Е.Г., Крутикова И.В., РФ Патент на изобретение, заявка № 2016115415, приоритет 20.04.2016.