Polarimetric study of the liquid crystal panels. Optimization for diffractive optics

María J. Yzuel

Professor Emeritus Department of Physics Universitat Autònoma de Barcelona (Spain)

Vice President ICO Bureau (International Commission for Optics) SPIE 2009 President

LCDs applications

Basic holographic data storage set-up

LCDs applications

Diffractive Optics

Medical Optics: Polarimeters

Mueller matrix images of the optic nerve head.

LCD from Video projectors

Transmission Twisted Nematic Liquid Crystal devices

TN-LCSLM: Sony Model LCX012BL; VGA (640 x 480) Videoproyector Sony VPL-V500

LCoS display

Reflective Liquid Crystal on Silicon devices

Twisted Nematic kit LC-R2500 by Holoeye

Parallel Aligned kit Pluto by Holoeye

• Polarimetric study of the liquid crystal panels

- Non Depolarizing devices
- Depolarizing devices
- Modulation Optimization

• Use of commercial LCDs in diffractive Optics

- Color Pattern Recognition
- Apodization
- Lens multiplexing

 Polarimetric study of the liquid crystal panels

Non Depolarizing devices

Polarimetric study of the liquid crystal panels

Transmission Twisted Nematic Liquid Crystal devices

TN-LCSLM: Sony Model LCX012BL; VGA (640 x 480) Videoproyector Sony VPL-V500

Simplified model

$$\frac{1}{n_e^2(\theta)} = \frac{\cos^2(\theta)}{n_{\rm H}^2} + \frac{\sin^2(\theta)}{n_{\rm L}^2}$$

Simplified model

Jones Matrix

$$M'_{LCSLM}(\alpha,\beta,\delta) = exp(-i(\beta+2\delta))R(-\alpha)\begin{pmatrix} X'-iY' & Z\\ -Z & X'+iY' \end{pmatrix}$$

$$X' = X \cos 2\delta - Y \sin 2\delta$$

$$Y' = Xsin2\delta + Ycos2\delta$$

$$Z = \frac{\alpha}{\gamma} \sin \gamma$$

$$X = \cos \gamma$$

$$Y = \frac{\beta}{\gamma} \sin \gamma$$
$$\gamma = \sqrt{\alpha^2 + \beta^2}$$

$$\delta(V) = \pi d_1(V) \Delta n_{max}/\lambda$$

$$\beta(V) = \pi d_2(V) \Delta n(V) / \lambda$$

Measured Parameters

Predictive capability of the model

 Polarimetric study of the liquid crystal panels

Depolarizing devices

Technical features of the used TNLCoS

Twisted Nematic LCoS display

Twist of the LC molecules director along the cell

- Philips model X97c3A0.
- Kit LC-R2500 by Holoeye
- 2.46 cm diagonal reflective LCoS display of the 45° twisted nematic type.
- XGA resolution (1024x768)
- Digitally controlled gray scales with 256 gray levels.
- Square pixels with a center to center separation of 19mm.
 93% fill factor.

Technical features of the used PALCoS

Parallel Aligned LCoS display

LC molecules parallel aligned

- PLUTO Spatial Light Modulator (SLM) distributed by Holoeye.
- Diagonal display of 1.8 cm.
- High resolution: 1920 x 1080.
- Small pixel size : 8µm.
- Fill factor of 87%.
- Different gamma corrections and electrical sequences available.

Time-fluctuations in LCoS displays

Time-fluctuations in LCoS displays

Twisted Nematic

Parallel Aligned

Time-fluctuations in LCoS displays

• Reflected intensity measurements (incident angle equal to 2°) acquired with a Tektronix TDS3012B Digital Oscilloscope

• Fixed polarizers (at 0° with respect to the vertical of the lab)

 Fixing gray level (at 200) and output polarizer (at 0° Vertical-Lab)

Intensity oscillates with a period of ~17 ms (~60 Hz), with a sub period of ~8 ms (~120 Hz)

LCoS display characterization set-up

LCoS Mueller matrices validation

Degree of Polarization (DOP)

Degree of polarization as a function of the gray level and the incident state of polarization for quasi-normal incidence.

 $M=M_{\Delta}M_{R}M_{D}$ Depolarization, retardance, and diattenuation

$$\mathbf{M} = \mathbf{M}_{\Delta} \mathbf{M}_{\mathbf{R}} = \begin{pmatrix} 1 & \vec{0}^T \\ \vec{P}_{\Delta} & m_{\Delta} \end{pmatrix} \cdot \begin{pmatrix} 1 & \vec{0}^T \\ \vec{0} & m_R \end{pmatrix} = \begin{pmatrix} 1 & \vec{0}^T \\ \vec{P}_{\Delta} & m_{\Delta} m_R \end{pmatrix}$$

The Jones matrix of a non-absorbing polarization element

$$\mathbf{J}_{\mathbf{R}} = e^{-i\beta} \begin{pmatrix} A & B \\ -B^* & A^* \end{pmatrix} = e^{-i\beta} \begin{pmatrix} A_{\mathrm{Re}} - iA_{\mathrm{Im}} & B_{\mathrm{Re}} - iB_{\mathrm{Im}} \\ -B_{\mathrm{Re}} - iB_{\mathrm{Im}} & A_{\mathrm{Re}} + iA_{\mathrm{Im}} \end{pmatrix}$$

$$A_{
m Re}^2 + A_{
m Im}^2 + B_{
m Re}^2 + B_{
m Im}^2 = 1$$

Phase measurement set-up

Interference method based set-up for experimental phase measurements.

Phase measurement set-up

UAB

$$I(x) = 2I_o(I + \cos(2\pi px + \Phi))$$

Interference method based set-up for experimental phase measurements.

Time-fluctuations of the phase

Phase fluctuation phenomenon

Intensity measurements at the zero and first diffraction orders for binary diffraction gratings with two different gray levels:

(a) (0,120), (b) (0,211) and (c) (0,255). (d) Instantaneous phase values as a function of time for different grey levels

UAB

 Polarimetric study of the liquid crystal panels

Modulation Optimization

Modulation Optimization

Modulation Optimization

ŤN-LCSĽM

Modulation Optimization

LCoS display response optimization

Optimized results for : 633 nm; Only polarizers and 2° incident angle.

LCoS display response optimization

Optimized results for : 633 nm; Polarizers and Wave plates and 2° incident angle.

LCoS display response optimization

Optimized results for : 633 nm; Polarizers and Wave plates and 2° incident angle.

LCoS display response optimization

Beam-splitter based set-up.

LCoS display response optimization

Optimized results for : 633 nm; Polarizers and Wave plates and Beamsplitter.

Use of commercial LCDs in diffractive Optics

Pattern recognition

Use of commercial LCDs in diffractive Optics

Apodizing filters

Apodizing filters

The **<u>3-D Point Spread Function</u>** (PSF) of an optical system is given by:

$$\mathbf{G}(\boldsymbol{\rho}, \mathbf{W}_{20}) = \left(1/\lambda^2\right) \left| F_{\lambda}\left(\boldsymbol{\rho}, \mathbf{W}_{20}\right) \right|^2$$

 $F(\rho, W_{20})$ monochromatic amplitude (optical system with radial symmetry) :

Apodizing filters

$$\tau(r) = 1 - r^2$$
 and $\tau(r) = r^2$

50 μm

$t(r) = 1 - r^2$ (transverse response)								
Position	$\rho'(\mu m)$	Intensity N2	$\rho'(\mu m)$	Intensity N2				
Center	0	1	0	1				
1 ^{rst} min.	84.1	0	88.3	0				
1^{rst} max.	105.9	0.004						

$t(r) = r^2$ (transverse response)								
Desition	ρ' (μm)	Intensity	ρ' (μm)	Intensity				
POSITION	(theory)	N2	(exper)	N2				
Center	0	1	0	1				
1 ^{rst} min.	49.8	0	54.3	0				
1 ^{rst} max.	74.7	0.08	79.9	0.07				

$$\tau(r) = 1 - r^2$$
 $\tau(r) = r^2$

Clear aperture Axial apodizing filter: $\tau(r) = 6.75 r^2 - 13.5 r^4 + 6.75 r^6$

Axial hyperresolving filter: $\tau(r) = 1 - 4r^2 + 4r$

Use of commercial LCDs in diffractive Optics

Multiplexed lenses

• Lens with a focal length of 1000 mm for the blue line of an Ar laser (λ = 458 nm)

Single lens

Multiplexed Lens

Randomly multiplexed lenses

Randomly multiplexed 33 lenses

position along optical axis (mm)

Randomly multiplexed 33 lenses

Single lens

Multiplexed lens

Randomly multiplexed 33 lenses

Encoding Complex pupils in Phase Only SLMs

NARROW RECTANGLE

modulus

phase

encoded pupil

TRIANGLE

phase

encoded pupil

UAB

Z = -12 Z = -10 Z = -8 Z = -6 Z = -4 Z = -2 Z = 0

UNIFORM PUPIL

Z = -18 Z = -16 Z = -14 Z = -12 Z = -10 Z = -8 Z = -6 Z = -4 Z = -2

NARROW RECTANGLE

WIDE RECTANGLE

Z = -48 Z = -44 Z = -40 Z = -36 Z = -32 Z = -28 Z = -24 Z = -20 Z = -16

-							3	
Z = -12	Z = -8	Z = -4	Z = 0	Z = 4	Z = 8	Z = 12	Z = 16	Z = 20

TWO RECTANGLES

Anamorphic Zoom

Phase fluctuation phenomenon

Effects on Diffractive Optics

3 multiplexed Blazed grating

3 multiplexed Blazed grating

o Period (18), angle (0,45,90), focal spherical lens (200)

Random Multiplex

Phase hologram

Research team

J. Campos, J.C. Escalera, A. Lizana, O. López-Coronado, A. Peinado, M. J. Yzuel Universitat Autònoma de Barcelona, SPAIN.

I. Moreno

Universidad Miguel Hernández, SPAIN.

A. Márquez

Universitat d'Alacant Universidad de Alicante Universidad de Alicante, SPAIN.

J. Nicolás

ALBA Synchrotron Light Source Facility, SPAIN.

C. Iemmi

Universidad de Buenos Aires, ARGENTINA.

J. A. Davis

San Diego State University. San Diego. USA.
Universitat Autònoma de Barcelona

www.uab.cat

Universitat Autònoma de Barcelona

http://grupsderecerca.uab.cat/mipoptilab/

1) LCD characterization and Diffractive Optics

2) Polarization control, polarimeters and applications

3) Optical metrology

SPIE

The international Society for Optics and Photonics

www.spie.org

SPIE at a Glance

SPIE in Russia

SPIE Student Chapters in Russia

- Saint–Petersburg Acad Univ Russian Acad of Science
- Kazan National Research Tech Univ
- Bauman Moscow State Technical
 Univ
- Lomonosov Moscow State Univ Chapter
- ITMO University Chapter
- Saratov State Univ
- V.E. Zuev Institute of Atmospheric Optics
- Vladivostok Student Chapter

- Samara Student Chapter
- Saint-Petersburg State Univ of Aerospace
- Institute of Automation and Electrometry
- Nizhny Novgorod Student Chapter
- Povolzhskiy State Univ of Telecommunications and Informatics Chapter
- National Research Univ. of Electronic TechNational Research Univ. of Electronic Tech

SPIE Student Chapter Map

SPIE Salary Survey

79% love their work and feel fortunate to get paid for doing it.

MEDIAN SALARY BY EMPLOYER TYPE

Major SPIE Conferences

Plus many smaller meetings

SPIE Digital Library

10 peer-reviewed journals, ebooks and 430,000 papers

SPIE Altruistic Activities

Over \$5.2 million USD in support in 2015

- \$350,000 USD in Scholarships
- \$90,000 USD in Education Outreach Grants
- Educational outreach kits, posters and videos
- Summer schools, science fairs & best paper prizes
- Free SPIE Digital Library for developing nations
- UNESCO Active Learning in Optics and Photonics (ALOP) teacher training for developing nations
- Women in Optics events and planner
- International Year of Light Founding Partner

Your Membership Makes a Difference!

INTERNATIONAL YEAR OF LIGHT 2015

Light Painting World Alliance

25,000 SPIE IYL books distributed

IYL New Years in Australia

Story of Light Festival in India

UK IYL patron, Duke of York

IYL song competition in Europe

IYL at CERN

Amsterdam rainbow train station

IYL stamps issued in 17 countries

Get Involved! www.spie.org

- Become an SPIE member
- Start a student chapter
- Apply for an outreach grant
- Educate the next generation
- Nominate a Fellow or Senior Member
- Present your research at a conference
- Become a reviewer
- Join a planning committee

International **Commission for Optics** www.e-ico.org

Is organized in Territorial Committees

Russian Federation Committee

General Congress every 3 years Next one in 21-25 August, 2017 in Japan

The General Assembly meets every 3 years.

ICO Organizes Topical conferences

Sponsor of meetings and schools

ICO Prizes and Awards

- ICO Prize -ICO and IUPAP Optics Prize ICOand ICTP Galieno Denardo Prize -ICO Galileo Galilei Award

Thank you for your attention