ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Манакова Н. А. Пользователь: manakovana Дата подписания: 23 65 2022

Н. А. Манакова

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М1.06 Уравнения соболевского типа на графах для направления 01.04.01 Математика уровень Магистратура магистерская программа Уравнения в частных производных форма обучения очная кафедра-разработчик Уравнения математической физики

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 01.04.01 Математика, утверждённым приказом Минобрнауки от 10.01.2018 № 12

Зав.кафедрой разработчика, д.физ.-мат.н., доц.

Разработчик программы, к.физ.-мат.н., доц., доцент

Эаектронный документ, подписанный ПЭЦ, хранитея в системе электронного документооборота Южно-Уральского государственного университета СВДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Манакова Н. А. Пользователь: manakovana Цата подписания: 23 03 2022

Н. А. Манакова

жетронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Ураниского государственного увиверентета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Цыпленкова О. Н. Пользователь: typlenkovaon [Lara подписания: 2005 2022

О. Н. Цыпленкова

1. Цели и задачи дисциплины

Цель изучения дисциплины это изучение методов математического и алгоритмического моделирования на основе дифференциальных уравнений, заданных на геометрическом графе с целью решения прикладных задача естествознания. Изучаемая дисциплина решает задачу: Применение методов математического и алгоритмического моделирования при изучении реальных процессов, моделируемых дифференциальными уравнениями, заданных на геометрических графах, с целью нахождения эффективных решений и прикладных задач.

Краткое содержание дисциплины

Элементы теории графов. Задача Штурма-Лиувилля на различных графах. Математические модели соболевского типа на графах

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-1 Способность к интенсивной научно- исследовательской работе	Знает: основные понятия и методы курса "Уравнения соболевского типа на графах", свойства геометрических графов Умеет: применять технические средства к решению задачи начально-краевых задач для уравнения соболевского типа, заданного на графе: алгоритмизировать процесс решения данного типа задач Имеет практический опыт: владения навыками сбора, обработки, анализа и систематизации информации по теме исследования

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Полулинейные уравнения соболевского типа, Линейные уравнения соболевского типа, Стохастические дифференциальные уравнения, Оптимальное управление для линейных уравнений соболевского типа	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Линейные уравнения соболевского типа	Знает: основные понятия, идеи, методы, связанные с уравнениями соболевского типа, основные научные подходы исследуемой задачи Умеет: использовать теоретические методы в

	решении прикладных задач, выделять и систематизировать основные идеи в научных текстах Имеет практический опыт: владения навыками сбора, обработки, анализа и систематизации информации по теме научноисследовательской работы
Оптимальное управление для линейных уравнений соболевского типа	Знает: основные постановки экстремальных задач и задач управления, основные методы математического моделирования Умеет: редуцировать прикладных задачи к абстрактным и на основе общей теории исследовать прикладные задачи управления; анализировать и контекстно обрабатывать информацию из различных источников; применять основные методы теории оптимального управления, применять фундаментальные математические знания и творческие навыки для быстрой адаптации к новым задачам, возникающим в процессе развития вычислительной техники и математических методов, к росту сложности математических алгоритмов и моделей, к необходимости быстрого принятия решений в новых ситуациях Имеет практический опыт: решения задач классическими вариационными методами, методами выпуклого анализа, представления знаний различных типов в проблемно-задачной форме
Полулинейные уравнения соболевского типа	Знает: основные направления исследований полулинейных уравнений соболевского типа Умеет: использовать теоретические методы в решении прикладных задач, анализировать и контекстно обрабатывать информацию из различных источников Имеет практический опыт: применения основных методов изучения полулинейных моделей соболевского типа в исследовательской работе
Стохастические дифференциальные уравнения	Знает: основные понятия и методы дисциплины "Стохастические дифференциальные уравнения", пространства дифференцируемых процессов Умеет: представлять математические модели с белым шумом в виде задач для стохастических дифференциальных уравнений; составлять алгоритмы решения начальных задач Имеет практический опыт: доказательств утверждений теории стохастических дифференциальных уравнений

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 2 з.е., 72 ч., 52,25 ч. контактной работы

Вид учебной работы	Всего	Распределение по семестрам
вид учестой рассты	часов	в часах

		Номер семестра
		4
Общая трудоёмкость дисциплины	72	72
Аудиторные занятия:	48	48
Лекции (Л)	24	24
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	24	24
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	19,75	19,75
с применением дистанционных образовательных технологий	0	
Подготовка к практическим и теоретическим контрольным работам	10	10
Подготовка к зачету	9,75	9.75
Консультации и промежуточная аттестация	4,25	4,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

№ раздела		Объем аудиторных занятий по видам в			
	Наименование разделов дисциплины	часах			
	-	Всего	Л	П3	ЛР
1	Элементы теории графов	12	6	6	0
2	Задача Штурма-Лиувилля на различных графах	16	8	8	0
3	Математические модели соболевского типа на графах	20	10	10	0

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	
1	1	Сеометрический, аналитический и теоретико-множественный подходы к определению графа	
2	1	Элементы графа. Изоморфизм. Матрицы смежности и инцидентности	2
3	1	Связность	2
4	2	Вадача Штурма-Лиувилля на отрезке и в области R^n	
5	2	Задача Штурма-Лиувилля на геометрическом графе	2
6	,	Решение задачи Штурма-Лиувилля для однореберного, двуреберного и n- реберного графа	4
7	3	Математическая модель Баренблатта-Желтова-Кочиной на графе. Теоретическая контрольная работа	4
8	3	Математическая модель Буссинеска-Лява на графе	4
9	3	Математическая модель Хоффа на графе	2

5.2. Практические занятия, семинары

No	№		Кол-
занятия		Наименование или краткое содержание практического занятия, семинара	ВО
заплтил	раздела		часов
1	1	Различные способы задания графа	2

2	1	Элементы графа. Изоморфизм. Матрицы смежности и инцидентности. Подграфы.	2
3	1	Связность	2
4	2	Задача Штурма-Лиувилля в области R ⁿ . Контрольная работа	2
5	2	Решение задачи Штурма-Лиувилля для однореберного, двуреберного трехреберного и n-реберного графа с использованием системы Maple	4
6	2	Свойства собственных чисел и собственных функций задачи Штурма - Лиувилля на геометрическом графе. Контрольная работа	
7	3	Разбор примеров математической модели Баренблатта-Желтова-Кочиной на графе	2
8	3	Повторение уравнений соболевского типа высокого порядка. Разбор примеров математической модели Буссинеска-Лява на графе	4
9	3	Разбор примеров математической модели Хоффа на графе. Контрольная работа	4

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов	
ΠΙΟΠΓΟΤΟΡΙΆ Ε ΠΝΑΚΤΙΙΙΑΡΚΙΙΜ ΙΙ	ПУМД основная (п.1), ПУМД дополнительная (п.1), ЭУМД дополнительная (п. 1, п. 2), журналы (1-3)	4	10	
	ПУМД основная (п.1), ПУМД дополнительная (п.1), ЭУМД основная (1, 2), ЭУМД дополнительная (3, 4)	4	9,75	

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

<u>{o</u> M∶	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	4	Текущий контроль	Контрольная работа "Однореберные и двухреберные графы"	0,2	16	Продолжительность — 2 академических часа. Студент должен самостоятельно решить задачи, оформить их решение на отдельном листочке. Контрольная работа состоит из 2 задач. Максимальный балл за решение задачи —	зачет

						8 баллов. Каждая задача оценивается следующим образом: 8 баллов — задача решена верно, ошибок нет; 7 баллов — задача решена верно, допущена одна арифметическая ошибка; 6 баллов — задача решена верно, допущены 2-3 арифметические ошибки; 5 баллов — 2 случая решены верно, третий случай составлен; 4 балла — 2 случая решены верно; 3 балла — правильно составлено уравнение и условия, рассмотрен один случай, второй случай выписан, но не решен; 2 балла — правильно составлено уравнение и условия, рассмотрен один случай; 1 балл — правильно составлено уравнение и условия; 0 баллов — отсутствует решение или	
2	4	Текущий контроль	Контрольная работа "N- реберные графы"	0,2	16	Продолжительность — 2 академических часа. Студент должен самостоятельно решить задачи, оформить их решение на отдельном листочке. Контрольная работа состоит из 2 задач. Максимальный балл за решение задачи — 8 баллов. Каждая задача оценивается следующим образом: 8 баллов — задача решена верно, ошибок нет; 7 баллов — задача решена верно, допущена одна арифметическая ошибка; 6 баллов — задача решена верно, допущены 2-3 арифметические ошибки; 5 баллов — 2 случая решены верно, третий случай составлен; 4 балла — 2 случая решены верно; 3 балла — правильно составлено уравнение и условия, рассмотрен один случай, второй случай выписан, но не решен; 2 балла — правильно составлено уравнение и условия, рассмотрен один случай; 1 балл — правильно составлено уравнение и условия; 0 баллов — отсутствует решение или сделано более 2 грубых ошибок.	зачет
3	4	Текущий контроль	Контрольная работа "Математические модели на графах"	0,3	10	Продолжительность — 2 академических часа. Контрольная работа состоит из 2 заданий. Максимальный балл за ответ на задание — 5 баллов. Каждая задача оценивается следующим образом: 5 баллов — задание верно, 4	зачет

						балла — задание написано в целом правильно, содержится не более двух негрубых ошибок, не повлиявших на общий ход решения задачи, верно выбран метод решения задачи, запись решения последовательная и математически грамотная, решение доведено до ответа; 3 балла — в решении содержатся 2—3 ошибки, не повлиявшие существенно на ход решения, или решение не доведено до ответа, но при этом изложено не менее 80% полного ответа, 2 балла - в решении содержатся ошибки, не повлиявшие существенно на ход решения, или решение не доведено до ответа, по при этом изложено не менее 60% полного ответа, 1 балл — в процессе решения допущены существенные ошибки, показавшие, что студент не владеет обязательными знаниями и умениями по данной теме, или изложено менее 40% полного ответа; 0 баллов — неверно выбран метод решения или изложено менее 20% полного ответа.	
4	4	Текущий контроль	Теоретическая контрольная работа	0,2	4	Контрольная точка Т проводится на лекционном занятии на последнем занятии семестра. Продолжительность — 40 минут. Работа состоит из 2 теоретических вопросов. Максимальная оценка за вопрос составляет 2 балла. При оценке используется следующая шкала: 2 балла — приведен полный ответ на вопрос, все использованные формулы верны, записаны все требуемые свойства; 1 балл — в ответе содержатся 2—3 ошибки или ответ неполный, но при этом изложено не менее 60% полного ответа; 0 баллов — изложено менее 60% верного ответа на вопрос.	зачет
5	4	Текущий контроль	Проверка конспекта лекций и посещаемости	0,1	12	Максимальный балл - 12. При оценке используется следующая шкала: 12*m/n баллов – приведен полный конспект лекций, где m-количество посещенных занятий, а n - общее количество занятий.	зачет
6	4	Проме- жуточная аттестация	Промежуточная аттестация	-	20	Максимальный балл за билет – 20 баллов. Билет состоит из 4 заданий. Максимальный балл за каждое задание – 5 баллов. 5 баллов – задание решено верно, 4 балла – задание решено в целом правильно, содержится не более двух негрубых ошибок, не повлиявших на общий ход решения задачи, верно	зачет

	выбран метод решения задачи, запись решения последовательная и математически грамотная, решение доведено до ответа; 3 балла — в решении содержатся 2—3 ошибки, не повлиявшие существенно на ход решения, или решение не доведено до ответа, но при этом изложено не менее 80% полного решения, 2 балла - в решении содержатся ошибки, не повлиявшие существенно на ход решения, или решение не доведено до ответа, но при этом изложено не менее 60% полного решения, 1 балл — в процессе решения допущены существенные ошибки, показавшие, что студент не владеет обязательными знаниями и умениями по данной теме, или изложено менее 40% полного решения; 0 баллов — неверно	
	выбран метод решения или изложено менее 20% полного решения.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	Студент может улучшить свои реитинг, проидя контрольное мероприятие промежуточной аттестации, которое не является	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения			№ KM		
томпетенции	т сзультаты обучения		2	3	15	6
	Знает: основные понятия и методы курса "Уравнения соболевского типа на графах", свойства геометрических графов				++	+
ПК-1	Умеет: применять технические средства к решению задачи начально- краевых задач для уравнения соболевского типа, заданного на графе: алгоритмизировать процесс решения данного типа задач	+	+	+	+	+
IIIK - I	Имеет практический опыт: владения навыками сбора, обработки, анализа и систематизации информации по теме исследования	+	+	+	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

1. Эльсгольц, Л. Э. Дифференциальные уравнения и вариационное исчисление Учеб. для физ. и физ.-мат. фак. ун-тов Л. Э. Эльсгольц. - 5-е изд. - М.: УРСС, 2002. - 319 с. ил.

б) дополнительная литература:

- 1. Свиридюк, Г. А. Линейные уравнения соболевского типа [Текст: непосредственный] учеб. пособие для вузов Г. А. Свиридюк, В. Е. Федоров; Челяб. гос. ун-т. Челябинск: Челябинский государственный университет, 2003. 179 с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Вестник ЮУрГУ. Серия "Математическое моделирование и программирование"
 - 2. Вестник ЮУрГУ. Серия "Математика. Механика. Физика"
 - 3. Дифференциальные уравнения
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические рекомендации по организации самостоятельной работы студента

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические рекомендации по организации самостоятельной работы студента

Электронная учебно-методическая документация

_	_			
J	Nº	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
		питепатупа	Электронный каталог ЮУрГУ	Замышляева, А. А. Уравнения соболевского типа на графах Текст учеб по направлению "Математика" А. А. Замышляева, О. Н. Цыпленкова; гос. ун-т, Каф. Уравнения мат. физики; ЮУрГУ Челябинск: Издатель Центр ЮУрГУ, 2016 27, [2] с. электрон. версия https://lib.susu.ru/ftd?base=SUSU_METHOD&key=000540755&dtype=F&
4	2 1	Основная литература	Электронно- библиотечная система издательства Лань	Шевелев, Ю.П. Дискретная математика. [Электронный ресурс] — Элен— СПб. : Лань, 2008. — 592 с. — Режим доступа: http://e.lanbook.com/l— Загл. с экрана.
1	3	Дополнительная литература	eLIBRARY.RU	журнал Вестник ЮУрГУ. Серия математическое моделирование и программирование http://elibrary.ru/title_about.asp?id=26854
2	4 ľ	Дополнительная литература	библиотечная система издательства	Покорный, Ю. В. Дифференциальные уравнения на геометрических гр учебное пособие / Ю. В. Покорный, О. М. Пенкин, В. Л. Прядиев. — М ФИЗМАТЛИТ, 2005. — 272 с. — ISBN 5-9221-0425-Х. — Текст : элект Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2753

Перечень используемого программного обеспечения:

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Не предусмотрено