ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Осницев К. В. Пользователь: osintcevku (Дата подписания 20 de 2023

К. В. Осинцев

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.05 Нагнетатели и теплоносители для направления 13.03.01 Теплоэнергетика и теплотехника уровень Бакалавриат форма обучения очная кафедра-разработчик Промышленная теплоэнергетика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника, утверждённым приказом Минобрнауки от 28.02.2018 № 143

Зав.кафедрой разработчика, к.техн.н., доц.

Разработчик программы, к.техн.н., снс, доцент

Электронный документ, подписанный ПЭЦ, хранитея в системе электронного документооборота Южир-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Осинцев К. В. Пользователь: osinteevky предоставляющей с убес 2023

К. В. Осинцев

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского госуларственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Пашини С В. Поль зовятель: музьфий [Диля подписания © 2.06.2023

С. В. Пашнин

1. Цели и задачи дисциплины

Цель изучения дисциплины состоит в ознакомлении с теоретическими основами, принципами действиями и областями применения в энергохозяйствах промышленных предприятий компрессоров, насосов, вентиляторов, детандеров. В результате изучения дисциплины студенты должны знать характерные режимы и устройство нагнетателей, владеть навыками оценки и анализа процессов, выбирать и рассчитывать нагнетатели; наиболее экономичные, надежные и безопасные режимы работы и регулирования.

Краткое содержание дисциплины

1. Место и роль нагнетателей. принцип действия, классификация. Схемы и области применения. Отечественные и зарубежные достижения и исследовании и создании нагнетателей. Основные понятия и определения терминалогии. Классификация по принципу действия. Теплоносители, применяемые в нагнетателях. 2. Анализ влияния изменения работы и параметров рабочего тела на работу сжатия и расширения. Основные параметры, характеризующие нагнетательные машины. Термодинамические процессы сжатия газов. Анализ влияния начальных условий и рода газа на работу сжатия. Уравнение сохранения энергии для потока массы при сжатии и расширении. Влияние теплоноситееля на процессы сжания и рпсширения в наагнетателе. Идеальные и реальные процессы. Общая классификация основных потерь. Интерпретация процессов в диаграммах состояния. Эксергетические характеристики. Определение работы и мощности машины, понятие о КПД. Схемы проточных частей нагнетателей. Кинематика процессов, треугольники скоростей в осевой и радильной ступенях. Газодинамические основы нагнетателей. 3. Схемы поршневых компрессоров. Классификация нагнетателей объемного действия, особенности их работы, область применения. Ротационные (винтовые, зубчатые) и поршневые нагнетатели. Поршневой компрессор. Работа сжатия газа в идеальном и реальном поршневом компрессоре. Удельная и полная работа и мощность поршневого компрессора. Мертвое пространство и его влияние на производительность поршневого компрессора. Предельная степень повышения давления в одной ступени, распределение давления между ступенями. Влияние теплоносителя на основные процессы в нагнетателе. КПД компрессора. Способы регулирования производительности поршневых и винтовых компрессоров, характеристики серийно выпускаемых компрессоров. Сопоставление с дрругими типами нагнетателей. Методика определения основных размеров компрессоров, подбор привода. 4. Нагнетатели кинетического действия. Классификация нагнетателей кинетического действия. Теоретический напор центробежного нагнетателя. Теоретические и действительные характеристики центробежных нагнетателей. Условия работы нагнетателя на сеть. Подобные режимы нагнетателя. Совместная работа нагнетателей. Параллельная и последовательная работа нагнетателей на общую сеть. Влияние неплоносителя на основные процессы нагнетателя. Допустимая высота всасывания центробежного насоса. Кавитацияя. Условия работы насоса, перекачивающего жидкости в двухфазном состоянии. Типы насосов и вентиляторов, области их применения. Надежность работы. Особенности конструкции центробежных и осевых насосов и вентиляторов. Методика выбора насосов и вентиляторов. Поди алгоритм наасчета на ЭВМ основных размеров насосов и

вентиляторов. Влияние сжимаеемости рабочегто тела на условия работы нагнетателей. Помпаж. Схема защиты турбокомпрессора от помпажа. Влияние наачальных условий и рода газа на характистику компрессора. Методика и алгоритм пересчета характеристик нагнетателей с помощью ЭВМ. Центробежный и осевой компрессоры. Сопоставление показателей обоснование преимущественных зон применения. Надежность работы компрессоров. Способы регулирования производительности нагнетателей. Особенности конструкций многоступенчатых центробежных и осевых компрессоров. Способы компенсации осевых усилий в турбокомпрессорах. Технико-экономические показатели серийно выпускаемых турбокомпрессоров. Выбор компрессора и привода к нему.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

ОП ВО (компетенции)	Планируемые результаты
	обучения по дисциплине
ПК-2 способен к разработке схем размещения объектов профессиональной деятельности и их эксплуатации в соответствии с технологией производства	обучения по дисциплине Знает: выбора вентиляторов и кондиционеров[2]; способы разработки функциональных схем размещения объектов профессиональной деятельности и их эксплуатации в соответствии с технологией производства; оборудование малой энергетики; способы построения научных статей; виды теплообменников; способы создания схем размещения объектов профессиональной деятельности и их эксплуатации в соответствии с технологией производства; правила технологической дисциплины при эксплуатации объектов профессиональной деятельности; способы расчета коэффициента теплопроводности лабораторных стендов; способы расчета систем отопления; виды теплоноситетелей и энергоносителей; принцип работы паровой турбины; схемы и методы проектирования

ТЭС; рассчитывать тепловые схемы котельных; строить функциональную схему Имеет практический опыт: выбора компрессоров; составлять технологические схемы управления; построения тепловых схем в области малой энергетики; выбирать аналоги оборудования; конструктивного расчета теплообменных аппаратов; расчета коэффициентов теплопроводности, теплоотдачи, теплопередачи; в соблюдении правил технологической дисциплины при эксплуатации объектов профессиональной деятельности; рассчитывать коэффициент диффузии для лабораторного стенда; выбора отопительных приборов; расчета систем производства и распределения энергоносителей; теплового расчета регулирующей ступени паровой турбины; выбор лабораторного оборудования; построения технологических схем потребления теплоносителей; в расчетах тепловых схем энергоблоков; выбора основного и вспомогательного оборудования котельных; выбора тепловой автоматики

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
1.Ф.04 Вопросы расчета экологических выбросов	
и выбора дымовых труб,	
1.Ф.06 Парогенераторы и котельные установки	
промышленных предприятий и ТЭС,	1.Ф.09 Источники и системы теплоснабжения в
1.Ф.08 Паровые турбины тепловых	промышленной теплоэнергетике
электростанций,	
1.Ф.10 Промышленные системы управления	
тепловыми процессами	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.Ф.10 Промышленные системы управления тепловыми процессами	Знает: выбора вентиляторов икондиционеров[2]; способыразработки функциональныхсхем размещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией производства; оборудование малойэнергетики; способыпостроения научных статей; виды теплообменников; способы создания схемразмещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией производства; правила технологической дисциплины при эксплуатации объектов профессиональной деятельности; способы

расчетакоэффициентатеплопроводностилабораторных стендов; способырасчета систем отопления; видытеплоноситетелей иэнергоносителей; принципработы паровой турбины;схемы и методыпроектирования лабораторныхстендов; виды нагнетателей:основное и вспомогательноеоборудование ТЭС;оборудование котельных итепловых сетей; тепловуюавтоматику Умеет: рассчитыватьколичество потребляемыхтеплоносителей; выбиратьсистемы управления;рассчитывать оборудование всфере малой энергетики;выбирать аналогиоборудования; рассчитыватьтемпературный напор;рассчитывать количествопередаваемой теплоты;разрабатывать схемыразмещения объектовпрофессиональнойдеятельности в соответствии стехнологией производства;рассчитывать коэффициентдиффузии для лабораторногостенда; рассчитыватьколичество необходимойтеплоты; разрабатыватьсистемы распределения энергоносителей; классифицировать паровыетурбины по их назначению;разрабатывать схемы длялабораторных стендов;рассчитывать количествотеплоносителя; разрабатыватьсхемы ТЭС; рассчитыватьтепловые схемы котельных;строить функциональную схему Имеет практический опыт: выбора компрессоров;составлять технологическиесхемы управления; построениятепловых схем в области малой энергетики; выбирать аналогиоборудования; конструктивногорасчета теплообменныхаппаратов; расчетакоэффициентовтеплопроводности, теплоотдачи, теплопередачи; всоблюдении правилтехнологической дисциплиныпри эксплуатации объектовпрофессиональнойдеятельности; рассчитыватькоэффициент диффузии длялабораторного стенда; выбораотопительных приборов;расчета систем производства ираспределения энергоносителей; тепловогорасчета регулирующей ступенипаровой турбины; выборлабораторного оборудования;построения технологическихсхем потреблениятеплоносителей; в расчетахтепловых схем энергоблоков;выбора основного ивспомогательного оборудованиякотельных; выбора тепловойавтоматики

1.Ф.06 Парогенераторы и котельные установки промышленных предприятий и ТЭС Знает: выбора вентиляторов икондиционеров[2]; способыразработки функциональныхсхем размещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией производства; оборудование малойэнергетики; способыпостроения научных статей; виды теплообменников; способы создания схемразмещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией производства; правила технологической дисциплины при эксплуатацииобъектов

профессиональнойдеятельности; способы расчетакоэффициентатеплопроводностилабораторных стендов; способырасчета систем отопления; видытеплоноситетелей иэнергоносителей; принципработы паровой турбины; схемы и методыпроектирования лабораторныхстендов; виды нагнетателей;основное и вспомогательноеоборудование ТЭС;оборудование котельных итепловых сетей; тепловуюавтоматику Умеет: рассчитыватьколичество потребляемыхтеплоносителей; выбиратьсистемы управления;рассчитывать оборудование всфере малой энергетики;выбирать аналогиоборудования; рассчитыватьтемпературный напор;рассчитывать количествопередаваемой теплоты;разрабатывать схемыразмещения объектовпрофессиональнойдеятельности в соответствии стехнологией производства;рассчитывать коэффициентдиффузии для лабораторногостенда; рассчитыватьколичество необходимойтеплоты; разрабатыватьсистемы распределения энергоносителей; классифицировать паровыетурбины по их назначению;разрабатывать схемы длялабораторных стендов;рассчитывать количествотеплоносителя; разрабатыватьсхемы ТЭС; рассчитыватьтепловые схемы котельных;строить функциональную схему Имеет практический опыт: выбора компрессоров;составлять технологическиесхемы управления; построениятепловых схем в области малойэнергетики; выбирать аналогиоборудования; конструктивногорасчета теплообменныхаппаратов; расчетакоэффициентовтеплопроводности, теплоотдачи, теплопередачи; всоблюдении правилтехнологической дисциплиныпри эксплуатации объектовпрофессиональнойдеятельности; рассчитыватькоэффициент диффузии длялабораторного стенда; выбораотопительных приборов;расчета систем производства ираспределения энергоносителей; тепловогорасчета регулирующей ступенипаровой турбины; выборлабораторного оборудования;построения технологическихсхем потреблениятеплоносителей; в расчетахтепловых схем энергоблоков;выбора основного ивспомогательного оборудованиякотельных; выбора тепловойавтоматики

1.Ф.04 Вопросы расчета экологических выбросов и выбора дымовых труб

Знает: выбора вентиляторов икондиционеров[2]; способыразработки функциональныхсхем размещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией производства; оборудование малойэнергетики; способыпостроения научных статей; виды теплообменников; способы создания схемразмещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией производства; правила технологической дисциплины

при эксплуатацииобъектов профессиональнойдеятельности; способы расчетакоэффициентатеплопроводностилабораторных стендов; способырасчета систем отопления; видытеплоноситетелей иэнергоносителей; принципработы паровой турбины;схемы и методыпроектирования лабораторныхстендов; виды нагнетателей;основное и вспомогательноеоборудование ТЭС;оборудование котельных итепловых сетей; тепловуюавтоматику Умеет: рассчитыватьколичество потребляемыхтеплоносителей; выбиратьсистемы управления;рассчитывать оборудование всфере малой энергетики;выбирать аналогиоборудования; рассчитыватьтемпературный напор;рассчитывать количествопередаваемой теплоты;разрабатывать схемыразмещения объектовпрофессиональнойдеятельности в соответствии стехнологией производства;рассчитывать коэффициентдиффузии для лабораторногостенда; рассчитыватьколичество необходимойтеплоты; разрабатыватьсистемы распределения энергоносителей; классифицировать паровыетурбины по их назначению;разрабатывать схемы длялабораторных стендов;рассчитывать количествотеплоносителя; разрабатыватьсхемы ТЭС; рассчитыватьтепловые схемы котельных;строить функциональную схему Имеет практический опыт: выбора компрессоров;составлять технологическиесхемы управления; построениятепловых схем в области малойэнергетики; выбирать аналогиоборудования; конструктивногорасчета теплообменныхаппаратов; расчетакоэффициентовтеплопроводности, теплоотдачи, теплопередачи; всоблюдении правилтехнологической дисциплиныпри эксплуатации объектовпрофессиональнойдеятельности; рассчитыватькоэффициент диффузии длялабораторного стенда; выбораотопительных приборов;расчета систем производства ираспределения энергоносителей; тепловогорасчета регулирующей ступенипаровой турбины; выборлабораторного оборудования;построения технологическихсхем потреблениятеплоносителей; в расчетахтепловых схем энергоблоков;выбора основного ивспомогательного оборудованиякотельных; выбора тепловойавтоматики

1.Ф.08 Паровые турбины тепловых электростанций

Знает: выбора вентиляторов икондиционеров[2]; способыразработки функциональныхсхем размещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией производства; оборудование малойэнергетики; способыпостроения научных статей; виды теплообменников; способы создания схемразмещения объектовпрофессиональнойдеятельности и ихэксплуатации в соответствии стехнологией

производства;правила технологическойдисциплины при эксплуатацииобъектов профессиональнойдеятельности; способы расчетакоэффициентатеплопроводностилабораторных стендов; способырасчета систем отопления; вилытеплоноситетелей иэнергоносителей: принципработы паровой турбины; схемы и методыпроектирования лабораторныхстендов; виды нагнетателей;основное и вспомогательноеоборудование ТЭС;оборудование котельных итепловых сетей; тепловуюавтоматику Умеет: рассчитыватьколичество потребляемыхтеплоносителей; выбиратьсистемы управления;рассчитывать оборудование всфере малой энергетики;выбирать аналогиоборудования; рассчитыватьтемпературный напор;рассчитывать количествопередаваемой теплоты;разрабатывать схемыразмещения объектовпрофессиональнойдеятельности в соответствии стехнологией производства;рассчитывать коэффициентдиффузии для лабораторногостенда; рассчитыватьколичество необходимойтеплоты; разрабатыватьсистемы распределения энергоносителей; классифицировать паровыетурбины по их назначению;разрабатывать схемы длялабораторных стендов;рассчитывать количествотеплоносителя; разрабатыватьсхемы ТЭС; рассчитыватьтепловые схемы котельных;строить функциональную схему Имеет практический опыт: выбора компрессоров;составлять технологическиесхемы управления; построениятепловых схем в области малойэнергетики; выбирать аналогиоборудования; конструктивногорасчета теплообменныхаппаратов; расчетакоэффициентовтеплопроводности, теплоотдачи, теплопередачи; всоблюдении правилтехнологической дисциплиныпри эксплуатации объектовпрофессиональнойдеятельности; рассчитыватькоэффициент диффузии длялабораторного стенда; выбораотопительных приборов;расчета систем производства ираспределения энергоносителей; тепловогорасчета регулирующей ступенипаровой турбины; выборлабораторного оборудования; построения технологическихсхем потреблениятеплоносителей; в расчетахтепловых схем энергоблоков;выбора основного ивспомогательного оборудованиякотельных; выбора тепловойавтоматики

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 6 з.е., 216 ч., 110,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 6
Общая трудоёмкость дисциплины	216	216
Аудиторные занятия:	96	96
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	32	32
Самостоятельная работа (СРС)	105,5	105,5
Контрольная работа №1	30	30
Контрольная работа №3	35,5	35.5
Контрольная работа №2	40	40
Консультации и промежуточная аттестация	14,5	14,5
Вид контроля (зачет, диф.зачет, экзамен)	_	экзамен

5. Содержание дисциплины

No	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
раздела	-	Всего	Л	П3	ЛР
1	Основные понятия о нагнетателях	6	2	2	2
2	Термодинамические основы теории нагнетателей	6	2	2	2
3	Газодинамические основы теории нагнетателей	12	4	4	4
4	Характеристики нагнетателей	12	4	4	4
5	Рабата нагнетателей при последовательном и параллельном соединении	6	2	2	2
6	Вентиляторы	12	4	4	4
7	Динамические компрессоры	18	6	6	6
8	Объемные нагнетатели	6	2	2	2
9	Динамические насосы	18	6	6	6

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	
1	I I	бочие параметры нагнетателей. Совместная работа нагнетателя и убопроводной системы.	
2		Применение законов термодинамики к описанию процессов нагнетания. Коэффициенты полезного действия нагнетателей.	2
3	3	Принцип действия динамического нагнетателя. Уравнение Эйлера.	2
4	3	Влияние формы лопаток на рабочие параметры нагнетателей. Циркуляция в межлопаточном канале, потери на трение и с утечками. Течение рабочего тела в межлопаточном канале.	2
5	1 4	Коэффициент быстроходности. Рабочие параметры и характеристики нагнетателей.	2
6	4	Характеристики нагнетателей при переменной частоте вращения Безразмерные и универсальные характеристики нагнетателей. регулирование нагнетателей.	2

7	5	Основные параметры вентиляторов. Центробежные вентиляторы.	2
8	6	Осевые вентиляторы. Тягодутьевые устройства.	2
9	6	Теплоносители в вентиляторах	2
10	7	Турбокомпрессоры. Методика расчета центробежного компрессора.	2
11	7	Характеристика турбокомпрессоров. Струйные компрессоры.	2
12	7	Теплоносители в компрессорах	2
13	8	Поршневые насосы и поршневые компрессоры. Роторные насосы и компрессоры.	2
14	9	Центробежные насосы. Кавитация при работе центробежных насосов.	2
15	9	Конструкции центробежных и сетевых насосов. Насосы специальных типов.	2
16	9	Теплоносители в динамических насосах.	2

5.2. Практические занятия, семинары

№ занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов			
1	1	Рабочие параметры нагнетателей. Совместная работа нагнетателя и трубопроводной системы.	2			
2	2	Применение законов термодинамики к описанию процессов нагнетания. Коэффициенты полезного действия нагнетателей.	2			
3	3	Принцип действия динамического нагнетателя. Уравнение Эйлера.	2			
4	3	Влияние формы лопаток на рабочие параметры нагнетателей. Циркуляция в межлопаточном канале, потери на трение и с утечками. Течение рабочего тела в межлопаточном канале.	2			
5	4	Коэффициент быстроходности. Рабочие параметры и характеристики нагнетателей.				
6	4	Характеристики нагнетателей при переменной частоте вращения Безразмерные и универсальные характеристики нагнетателей. регулирование нагнетателей.	2			
7	5	Основные параметры вентиляторов. Центробежные вентиляторы.	2			
8	6	Осевые вентиляторы. Тягодутьевые устройства.	2			
9	6	Теплоносители в вентиляторах	2			
10	7	Турбокомпрессоры. Методика расчета центробежного компрессора.	2			
11	7	Характеристика турбокомпрессоров. Струйные компрессоры.	2			
12	7	Теплоносители в компрессорах	2			
13	8	Поршневые насосы и поршневые компрессоры. Роторные насосы и компрессоры.	2			
14	9	Центробежные насосы. Кавитация при работе центробежных насосов.	2			
15	9	Конструкции центробежных и сетевых насосов. Насосы специальных типов.	2			
16	9	Теплоносители в динамических насосах.	2			

5.3. Лабораторные работы

<u>№</u> занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1		Рабочие параметры нагнетателей. Совместная работа нагнетателя и трубопроводной системы	2
2	/	Применение законов термодинамики к описанию процессов нагнетания. Коэффициенты полезного действия нагнетателей.	2

2	1 2	TI V	2
3	3	Принцип действия динамического нагнетателя. Уравнение Эйлера.	2
4	3	Влияние формы лопаток на рабочие параметры нагнетателей. Циркуляция в межлопаточном канале, потери на трение и с утечками. Течение рабочего тела в межлопаточном канале.	2
5	4	Коэффициент быстроходности. Рабочие параметры и характеристики нагнетателей.	2
6	4	Характеристики нагнетателей при переменной частоте вращения Безразмерные и универсальные характеристики нагнетателей. регулирование нагнетателей.	2
7	5	Основные параметры вентиляторов. Центробежные вентиляторы.	2
8	6	Осевые вентиляторы. Тягодутьевые устройства.	2
9	6	Теплоносители в вентиляторах	2
10	7	Турбокомпрессоры. Методика расчета центробежного компрессора.	2
11	7	Характеристика турбокомпрессоров. Струйные компрессоры.	2
12	7	Теплоносители в компрессорах	2
13	8	Поршневые насосы и поршневые компрессоры. Роторные насосы и компрессоры.	2
14	9	Центробежные насосы. Кавитация при работе центробежных насосов.	2
15	9	Конструкции центробежных и сетевых насосов. Насосы специальных типов.	2
16	9	Теплоносители в динамических насосах.	2

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Контрольная работа №1	Нагнетатели и тепловые двигатели Учеб. для студентов вузов, обучающихся по напр. "Теплоэнергитика", спец. "Пром. теплоэнергетика" В. М. Черкасский, Н. В. Калинин, Ю. В. Кузнецов, В. И. Субботин М.: Энергоатомиздат, 1997 с. 17-31	6	30		
Контрольная работа №3	Нагнетатели и тепловые двигатели Учеб. для студентов вузов, обучающихся по напр. "Теплоэнергитика", спец. "Пром. теплоэнергетика" В. М. Черкасский, Н. В. Калинин, Ю. В. Кузнецов, В. И. Субботин М.: Энергоатомиздат, 1997 С. 61-91	6	35,5		
Контрольная работа №2	Нагнетатели и тепловые двигатели Учеб. для студентов вузов, обучающихся по напр. "Теплоэнергитика", спец. "Пром. теплоэнергетика" В. М. Черкасский, Н. В. Калинин, Ю. В. Кузнецов, В. И. Субботин М.: Энергоатомиздат, 1997 с. 32 - 51	6	40		

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	6	Текущий контроль	Контрольная работа №1	1	6	Письменный опрос осуществляется на последнем занятии изучаемого раздела. Студенту задаются 3 вопроса из списка контрольных вопросов. Время, отведенное на опрос -15 минут. При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179). Правильный ответ на вопрос соответствует 2 баллам. Частично правильный ответ соответствует 1 баллу. Неправильный ответ на вопрос соответствует 0 баллов. Максимальное количество баллов — 6. Весовой коэффициент мероприятия — 1.	экзамен
2	6	Текущий контроль	Контрольная работа №2	1	6	Письменный опрос осуществляется на последнем занятии изучаемого раздела. Студенту задаются 3 вопроса из списка контрольных вопросов. Время, отведенное на опрос -15 минут. При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена приказом ректора от 24.05.2019 г. № 179). Правильный ответ на вопрос соответствует 2 баллам. Частично правильный ответ соответствует 1 баллу. Неправильный ответ на вопрос соответствует 0 баллов. Максимальное количество баллов — 6. Весовой коэффициент мероприятия — 1.	экзамен
3	6	Проме- жуточная аттестация	Контрольная работа №3	-	6	Письменный опрос осуществляется на последнем занятии изучаемого раздела. Студенту задаются 3 вопроса из списка контрольных вопросов. Время, отведенное на опрос -15 минут. При оценивании результатов мероприятия используется балльно-рейтинговая система оценивания результатов учебной деятельности обучающихся (утверждена	экзамен

	1				•		
						приказом ректора от 24.05.2019 г. № 179).	
						Правильный ответ на вопрос соответствует	
						2 баллам.	
						Частично правильный ответ соответствует	
						1 баллу.	
						Неправильный ответ на вопрос	
						соответствует 0 баллов.	
						Максимальное количество баллов – 6.	
						Весовой коэффициент мероприятия – 1.	
						Письменный опрос осуществляется в	
						установленный день по графику сессии.	
						Студенту задаются 3 вопроса из списка	
						вопросов. Время, отведенное на опрос -15	
						минут.	
						При оценивании результатов мероприятия	
		Проме-		-		используется балльно-рейтинговая система	
			Экзамен			оценивания результатов учебной	
4	6	жуточная			6	деятельности обучающихся (утверждена	экзамен
		аттестация				приказом ректора от 24.05.2019 г. № 179)	
						Правильный ответ на вопрос соответствует	
						2 баллам.	
						Частично правильный ответ соответствует	
						1 баллу.	
						Неправильный ответ на вопрос	
						соответствует 0 баллов.	
						Максимальное количество баллов – 6.	
						Весовой коэффициент мероприятия – 1.	

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	минут. Отлично: Величина реитинга обучающегося по лисциплине 85 100 % Хорошо: Величина рейтинга	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	и Результаты обучения		№ KM		
		1	2	3	4
ПК-2	Знает: выбора вентиляторов и кондиционеров[2]; способы разработки функциональных схем размещения объектов профессиональной деятельности и их эксплуатации в соответствии с технологией производства; оборудование малой энергетики; способы построения научных статей; виды теплообменников; способы создания схем размещения объектов профессиональной деятельности и их эксплуатации в соответствии с	+	+		+

			_	
	технологией производства; правила технологической дисциплины при эксплуатации объектов профессиональной деятельности; способы расчета коэффициента теплопроводности лабораторных стендов; способы расчета систем отопления; виды теплоноситетелей и энергоносителей; принцип работы паровой турбины; схемы и методы проектирования лабораторных стендов; виды нагнетателей; основное и вспомогательное оборудование ТЭС; оборудование котельных и тепловых сетей; тепловую автоматику			
ПК-2	Умеет: рассчитывать количество потребляемых теплоносителей; выбирать системы управления; рассчитывать оборудование в сфере малой энергетики; выбирать аналоги оборудования; рассчитывать температурный напор; рассчитывать количество передаваемой теплоты; разрабатывать схемы размещения объектов профессиональной деятельности в соответствии с технологией производства; рассчитывать коэффициент диффузии для лабораторного стенда; рассчитывать количество необходимой теплоты; разрабатывать системы распределения энергоносителей; классифицировать паровые турбины по их назначению; разрабатывать схемы для лабораторных стендов; рассчитывать количество теплоносителя; разрабатывать схемы ТЭС; рассчитывать тепловые схемы котельных; строить функциональную схему	++		+
ПК-2	Имеет практический опыт: выбора компрессоров; составлять технологические схемы управления; построения тепловых схем в области малой энергетики; выбирать аналоги оборудования; конструктивного расчета теплообменных аппаратов; расчета коэффициентов теплопроводности, теплоотдачи, теплопередачи; в соблюдении правил технологической дисциплины при эксплуатации объектов профессиональной деятельности; рассчитывать коэффициент диффузии для лабораторного стенда; выбора отопительных приборов; расчета систем производства и распределения энергоносителей; теплового расчета регулирующей ступени паровой турбины; выбор лабораторного оборудования; построения технологических схем потребления теплоносителей; в расчетах тепловых схем энергоблоков; выбора основного и вспомогательного оборудования котельных; выбора тепловой автоматики	+	-	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Черкасский, В. М. Насосы, вентиляторы, компрессоры Учеб. для теплоэнерг. спец. втузов. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1984. 415 с. ил.
- б) дополнительная литература:

Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Крмпрессорная техника и пневматика. Научн. техн и инф. журнал. Ассоциация компрессорщиков.
- г) методические указания для студентов по освоению дисциплины:
 - 1. Осинцев К.В. Теплотехника.- Челябинск, Изд. центр ЮУРГУ.- 2010.-213с.

2. Каргаполова Н.Н. Тепловые двигатели и нагнетатели.- Челябинск, 2009.- 33.c

из них: учебно-методическое обеспечение самостоятельной работы студента:

- 1. Осинцев К.В. Теплотехника.- Челябинск, Изд. центр ЮУРГУ.-2010.-213с.
- 2. Каргаполова Н.Н. Тепловые двигатели и нагнетатели.- Челябинск, 2009.- 33.c

Электронная учебно-методическая документация

Нет

Перечень используемого программного обеспечения:

- 1. Microsoft-Project(бессрочно)
- 2. Microsoft-Office(бессрочно)
- 3. ANSYS-ANSYS Academic Multiphysics Campus Solution (Mechanical, Fluent, CFX, Workbench, Maxwell, HFSS, Simplorer, Designer, PowerArtist, RedHawk)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

- ООО "Гарант Урал Сервис"-Гарант (31.12.2022)
- 2. -База данных ВИНИТИ РАН(бессрочно)
- 3. -Техэксперт(31.12.2022)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	445	Программы обучения в POWER Point iSpring Sguit. Проектор с подсоединенным к нему компьютером.
Лекции		переносной проектор с компьютером