Министерство образования и науки Российской Федерации «Южно-Уральский государственный университет» Кафедра «Двигатели внутреннего сгорания»

621.43(07) Ш656

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ДВИГАТЕЛЕЙ

Методические указания

Челябинск Издательский центр ЮУрГУ 2015 *Одобрено* учебно-методической комиссией автотракторного факультета

Рецензент Губарев А.В.

Автоматизированное проектирование двигателей: методи-Ш656 ческие указания / сост. В.В. Шишков. – Челябинск: Издательский центр ЮУрГУ, 2015. – 26 с.

> Методические указания подготовлены в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки «Энергетическое машиностроение» и программой курса «Автоматизированное проектирование двигателей». В руководстве подробно рассмотрена одна из процедур проектирования двигателя внутреннего сгорания – моделирование системы впрыска топлива дизеля на основе программы BOOST HYDSIM.

> Методические указания предназначены для студентов, проходящих подготовку по направлению «Энергетическое машиностроение» (степень бакалавр, профиль «Двигатели внутреннего сгорания»).

> > УДК 621.43-52(075.8)

© Издательский центр ЮУрГУ, 2015

введение

Создание современных высокоэффективных поршневых двигателей внутреннего сгорания (ДВС) требует привлечения инженерно-технических работников (ИТР), владеющих знаниями и навыками, необходимыми для обеспечения высокого качества проектных работ, выполняемых в течение ограниченного времени. На моторостроительных предприятиях создаются группы ИТР, включающие конструкторов и испытателей, владеющих большим опытом проектирования ДВС, и специалистов с навыками применения методов математического моделирования процессов, протекающих в поршневых двигателях.

Известные европейские компании AVL GmbH (Австрия), Ricardo (Англия) и FAV Motorentechnik GmbH (Германия) занимают лидирующие позиции в области проектирования, исследования и доводки двигателей внутреннего сгорания. Одно из основных направлений в их деятельности – разработка программных продуктов для моделирования процессов в поршневых ДВС.

Важными составными частями проектирования ДВС служат процедуры моделирования термодинамического цикла ДВС, моделирования кинематики и динамики кривошипно-шатунного механизма, газораспределительного механизма, моделирования системы впрыска топлива и другие. В частности, фирма AVL (разработкой программных продуктов для моделирования процессов в двигателях занимается Advanced Simulation Technologies (AST – департамент передовых технологий моделирования) для моделирования газообмена и термодинамического цикла ДBC применяет программу BOOST. а для моделирования систем топливоподачи дизелей предназначена программа HYDSIM. В качестве отечественных аналогов названных программных продуктов можно рассматривать, прежде всего, программу ДИЗЕЛЬ-РК (www.dieselrk.bmstu.ru) и программу ВПРЫСК (http://energy.power.bmstu.ru/e02/inject/ i03rus.htm).

В рамках договора о сотрудничестве между AVL GmbH и ЮУрГУ согласовано применение в учебном процессе программных продуктов компании AVL. Методические указания содержат рекомендации, разработанные на основе руководства для пользователей BOOST HYDSIM (http://www.avl.com/).

Методические указания направлены на систематизацию и организацию аудиторной и самостоятельной работы студентов при освоении программы курса «Автоматизированное проектирование двигателей». Данное руководство подготовлено в соответствии с требованиями Федерального государственного образовательного стандарта по направлению подготовки «Энергетическое машиностроение».

3

МОДЕЛИРОВАНИЕ ТОПЛИВНЫХ СИСТЕМ В BOOST HYDSIM

Главная область применения HYDSIM – моделирование систем впрыскивания топлива. Первоначально HYDSIM был разработан для моделирования топливных систем дизелей. В дальнейшем программа была успешно использована для расчета систем топливоподачи бензиновых двигателей с искровым зажиганием, для определения характеристик впрыскивания альтернативного топлива и других. Кроме того, HYDSIM находит применение при расчетах гидравлических приводов клапанов, передач, машинных тормозных систем и приводов. Таким образом, HYDSIM позволяет моделировать гидравлические и механические системы.

Моделирование аккумуляторной топливной системы с электрогидроуправляемой форсункой

Моделирование топливных систем и отдельных элементов топливных систем с помощью HYDSIM включает основные этапы моделирования, которые являются общими для моделирования любых гидравлических систем, в том числе Common Rail. С ростом сложности модели вводятся элементы нового типы и дополнительные средства моделирования, которые используются для построения модели реальной системы. Особое внимание для разветвленных систем уделяется связям элементов друг с другом, а также заданию граничных условий. Это можно продемонстрировать на примере создания модели форсунки Common Rail оснащенной управляющим электромагнитным клапаном.

Рис. 1. Форсунка Common Rail с электромагнитным клапаном

Форсунка Common Rail с электромагнитным клапаном (рис. 1) имеет достаточно сложную конструкцию и для ее моделирования необходима тщательно проработанная схема (рис. 2) с детализацией основных элементов, используемых при дальнейшем моделировании.

Рис. 2. Схема модели форсунки Common Rail с детализацией элементов

1. Описание BOOST Hydsim модели форсунки Common Rail

Модель (рис. 3) начинается с общей топливной магистрали (Rail Pressure, см. номер 12 на схеме), для которой задается постоянное граничное давление, например 1500 бар. Топливопровод высокого давления (Injector Tube, 1) соединяет форсунку с общей топливной магистралью. На следующем участке (Junction, 21) система распадается на две ветви: одна ветвь направлена через канал в корпусе форсунки и через объем в распылителе (Nozzle Volume, 4) к распылителю (Nozzle Bore, 3), а другая идет через канал в корпусе (Holder Bore, 2), входной дроссель (Inlet Throttle, 11) к управляющему объему (Control Volume, 5). На схеме для объема в распылителе (Nozzle Volume, 4) установлены соответствующие соединения с иглой (Needle, 17) и сопловыми отверстиями (Nozzle Orifice, 18). Для сопловых отверстий показана связь с давлением в цилиндре (Cylinder Pressure, 13), этот элемент представляет собой граничное условие с постоянным давлением. Необходимо определить и задать среднее давление в цилиндре за период впрыскивания, например 100 бар. Управляющий объем (Control Volume, 5) соединен с одной стороны с управляющим поршнем (Control Piston, 10) и с другой стороны с выходным дросселем (Outlet Throttle, 16), который имеет большую площадь поперечного сечения, чем входной дроссель (Inlet Throttle, 11). Выходной дроссель соединен через небольшой объем клапана (Valve Volume, 6) с электромагнитным клапаном (Solenoid Valve, 7). Электромагнитный клапан управляет закрытием/открытием линии слива. Линия слива включает выходной объем (Spill Volume, 8), сливной дроссель (Sump Throttle, 15) и топливный бак (Fuel Tank, 14). На схеме показаны связи иглы и управляющего поршня с топливным баком, для которого задается граничное давление 1,5 бар. Рассматриваемые до сих пор соединения между значками являются гидравлическими. Для них не предусмотрены никакие данные (это только символ). В дополнение к гидравлическим связям, игла имеет также две механические связи: одна (относительно мягкая, через пружину) обозначает пружину форсунки и другая (жесткий стержень) обозначает контакт иглы с управляющим поршнем. Для механических соединений предусмотрены исходные данные. Пружина иглы примыкает к неподвижной опоре (Nozzle Holder, 9), которая моделируется как неподвижная механическая граница.

Рис. 3. BOOST Hydsim модель форсунки Common Rail

Утечки топлива через направляющую иглы и через управляющий поршень моделируются двумя элементами утечек: утечки через направляющую иглы (Nozzle Leakage, 20) и через управляющий поршень (Piston Leakage, 19). Для идентификации элемента утечек эти значки имеют специальные связи для иглы

и для управляющего поршня. Игла также имеет специальное подключение к сопловым отверстиям.

2. Основные этапы создания BOOST Hydsim модели форсунки Common Rail

1. Создаем граничное условие (Rail Pressure). В левой части открывшегося окна программы BOOST Hydsim в папке Elements выбираем вкладку BOUNDARY. Под ней появляется набор элементов, из которых выбираем Pressure/Temperature. Двойной клик левой кнопкой мыши по этой иконке переводит ее на рабочее поле модели. С иконкой можно совершать необходимые действия: перемещение, поворот, переименование и другие, используя предлагаемые функции при нажатии правой кнопки мыши или иным способом (см. далее в тексте).

2. Аналогичным образом создаются следующие элементы:

• Injector Tube (группа LINE элемент Laplace Transform);

• Junction (группа JUNCTION элемент Tee (angle).

Поворачивать элемент можно выделив его и при нажатии клавиши "R" элемент будет повернут на 90 градусов по часовой стрелке.

3. Используются гидравлические линии (синие линии) для подключения Rail Pressure к Injector Tube и Injector Tube к Junction.

4. Для создания Nozzle Bore и Holder Bore также используется группа LINE элемент Laplace Transform.

5. Создаем Inlet Throttle и Outlet Throttle из группы ORIFICE, элемент Standard. Устанавливаем необходимые гидравлические соединения.

6. Создаем Control Piston из группы PISTON элемент Standard.

7. Создаем Needle из группы NEEDLE элемент Standard.

8. Создаем Nozzle Volume и Control Volume из группы VOLUME элемент Standard.

9. Создаем Nozzle Orifice из группы NOZZLE элемент VCO (Basic model).

10. Используем гидравлические соединения для подключения Nozzle Volume к Needle и Nozzle Orifice.

11. Создаем механическое соединение Needle и Control Piston (выбираем соответствующий красный соединитель).

12. Устанавливаем специальную связь Connect Needle и Nozzle Orifice (выбираем соответствующий зеленый соединитель).

13. Создаем два граничных условия. Для первого размещаем на модели иконку Cylinder Pressure из группы BOUNDARY элемент Pressure, посредством которого моделируется давление в цилиндре. Для второго размещаем иконку Nozzle Holder из группы BOUNDARY элемент Mechanical, который моделирует механическую границу для пружины иглы распылителя.

14. Подключаем Nozzle Orifice к Cylinder Pressure гидравлической связью и Needle с Nozzle Holder с помощью механического соединения.

15. Создаем Valve Volume перед клапаном соленоида и Spill Volume на линии слива из группы VOLUME элемент Standard.

16. Создаем Solenoid Valve из группы THROTTLE элемент Time-controlled.

17. Создаем Sump Throttle из группы ORIFICE элемент Standard.

18. Создаем Fuel Tank из группы BOUNDARY элемент Pressure.

19. Создаем гидравлические соединения на соответствующие иконки (шаги 14 – 18).

20. Создаем Nozzle Leakage и Piston Leakage группы LEAKAGE элемент Annular Gap.

21. Используем специальные соединения для подключения Nozzle Leakage к Needle и Piston Leakage к Control Piston

22. Устанавливаем гидравлические соединения от Control Volume к Piston Leakage и от Nozzle Volume к Nozzle Leakage.

23. Устанавливаем гидравлические соединения от элементов Needle и Piston Leakage к Fuel Tank. После завершения построения модели форсунки Common Rail она должна выглядеть, как показано на рис. 3.

Проверяем позиционирование иконок элементов на схеме. Связи между элементами модели и их направления должны быть строго выдержаны. Прежде чем двигаться дальше, необходимо внимательно все проверить.

3. Входные данные

1. Определяем исходные данные для каждого элемента, дважды щелкнув значок или нажав на значок правой клавишей мыши, и выбираем свойства из подменю.

2. Целесообразно задание входных данных начать с давления в рампе. Задание давления в качестве граничного условия показано в окне на рис. 4.

3. Указываем следующие данные для давления в цилиндре и давления в топливном баке на границе элементов:

• для цилиндра устанавливаем 100 бар.

• для топливного бака – 1,5 бар.

4. Входные данные не требуются для Nozzle Holder, который представлен в качестве фиксированной механической границы.

5. Определяем исходные данные для топливопровода высокого давления. В диалоге для Injector Tube указываем длину линейного участка 200 мм и диаметр 2,4 мм. Для сохранения введенных данных необходимо нажать ОК (рис. 5).

6. Кроме того, определяются входные данные по остальным двум направлениям:

• Nozzle Bore: длина 110 мм и диаметром 2,4 мм;

• Holder Bore: длина 70 мм и диаметром 2,4 мм.

7. Если канал имеет расширение или сужение в конце (т.е. резкое изменение поперечного проходного сечения), необходимо включить расширение/сжатие в

месте соединения (Extension/Contractions at Connections), и указать необходимую площадь поперечного сечения и коэффициенты сопротивления потоку.

(a) l	Press	ure 13 - Hydraulic P	ressure & Tempera	lure		
Ele	ment	Name Rail Pressure)			OK
			6			Cancel
Shi 7	ift Tim Scalin	e/Angle relative to c: Iq factor for 1st colu	nn 1	S		Help
						Accept
F	Pressu	re & Temperature v	s. Time / Reference	e Angle		
		Time/Ref. Angle	Pressure	Temperature		
		S	bar	K		
	1	0	1500	293.15	Insert row	
	2				Remove row	
	3 4				View	
	5				Load	
	6				Store	
	7					
	8					
	9					
	1. 6. 1.					

Рис. 4. Фрагмент окна для ввода граничного давления у рампы

Injector Tube 1 - Solution by Laplace T	ransform	
Element Name Injector Tube		ОК
Fluid Properties		Cancel
		Help
Line length 200	mm	
Hydraulic diameter 2.4	mm	
Expansions/Contractions at Co	onnections	
	input end output end	
Cross-sectional area m ²	0	
Positive flow resist. [-]	0	
Negative flow resist. [-]	0 O	
Compliant walls		
Wall thickness	0 m	

Рис. 5. Фрагмент окна для ввода параметров топливопровода высокого давления

8. Если должно быть учтено изменение скорости звука в канале в связи со свойствами стенок канала, активируют Compliant walls и указывают толщину стенки и модуль Юнга.

9. Продолжаем указывать исходные данные для объемных элементов. Окно ввода для Nozzle Volume показано на рис. 6.

Nozzle Volume 4 - Standard Volume		
Element Name Nozzle Volume		ок
	1	Cancel
Fluid Properties	J	Help
Initial volume 1.7e-007	m^3	Accept
Cavitation		
Vapour pressure 100	Ра	
Initial cavity 0	m^3	

Рис. 6. Диалог ввода для Nozzle Volume

Вводим начальный объем 170 мм³. По умолчанию давление насыщенных паров задается 100 Па. Указав нулевое давление, или не указав никакого значения, мы пренебрегаем кавитацией и допускаем возможность падения давления ниже нуля.

10. Ввод входных данных (начальный объем) для других объемов:

- Control Volume: 20 мм³;
- Valve Seat Volume: 15 мм³;
- Spill Volume: 300 мм³.

11. В диалоге ввода для Junction, должен быть указан угол между направлениями 1 и 2 (рис. 7).

12. Диалог ввода Inlet Throttle открывается, как показано в окне на рис. 8:

a) вводим номинальное и узкое поперечное сечение блока дроссельного отверстия – 0,80 мм² и 0,046 мм² соответственно;

б) указываем сопротивление потоку (убыток). Коэффициент в дросселе равен 1,83. Если отверстие имеет сужение или расширение на входе или выходе, их поперечные сечения должны иметь соответствующее сопротивление потоку (в обоих направлениях), и должны быть указаны отдельно в Expansions/Contractions at Connections.

Примечание: В качестве альтернативы вместо площадей могут быть указаны соответствующие диаметры.

ment	Name Price mi			_	
	Flu	id Properties			Cance
					Help
Cross	-section Area	Cross-section	Diameter		
		tube	throttle		
Area	a mm^2	0.8	0.046		
Cor	nstant flow resis	tance in throttle			
: Flov	v Resistance co	ef. C Flow Rat	е		
Flov	« Resistance co	ef. C Flow Rat	e		
) Flov low re	w Resistance co esistance coef.	oef. C Flow Rat (Z>1) 1.83	e [-]		
Flov	w Resistance co esistance coef.	ef. C Flow Rat (Z>1) 1.83	e [-]		
⊺Flov low re Var	w Resistance co esistance coef. iable flow resist	ef. C Flow Rat (Z>1) 1.83	e [-]		
i Flov ilow re Var	w Resistance co esistance coef. iable flow resist Pressure rati	oef. O Flow Rat (Z>1) 1.83 ance in throttle -	e [-] oef.]		
È Flov 'Iow re ⊡ Var	w Resistance co esistance coef. iable flow resist Pressure rati	oef. © Flow Rat (Z>1) 1.83 ance in throttle – Resistance c	e [-] oef.		
D Flov Tow re O ∨ar	w Resistance co esistance coef. iable flow resist Pressure rati	ef. C Flow Rat (Z>1) 1.83 ance in throttle – 0 Resistance c 0	e [-] oef. 0 Insert row		
Flov Iow re Var	w Resistance co esistance coef. iable flow resist Pressure rati	ance in throttle – (Z>1) 1.83 ance in throttle – C Resistance c	e [-] oef. 0 Insert row Remove row		
) Flow (low re Var 1 2 3	w Resistance co esistance coef. iable flow resist Pressure rati	ef. C Flow Rat (Z>1) 1.83 ance in throttle – C Resistance c C [-] C C	e [-] oef. 0 Insert row 0 Remove row View		
Flov Iow re Var	w Resistance co esistance coef. Table flow resist Pressure rati	ef. O Flow Rat (Z>1) 1.83 ance in throttle – 0 Resistance o [-] 0	e [-] oef. 0 Insert row 0 Remove row View		
 Flow Iow re Var 1 2 3 4 5 	w Resistance co esistance coef. iable flow resist Pressure rati	ef. C Flow Rat (Z>1) 1.83 ance in throttle – C Resistance c C [-] C C	e [-] 0 [nsert row 0 Remove row 0 View Load		
 Flow Iow re Var 1 2 3 4 5 6 2 	w Resistance co esistance coef. iable flow resist Pressure rati	ef. O Flow Rat (Z>1) 1.83 ance in throttle – 0 Resistance o [-] 0	e [-] oef. 0 Insert row 0 Remove row 0 View Load Store		
 Flow Var Var 1 2 3 4 5 6 7 	w Resistance co esistance coef. iable flow resist Pressure rati	bef. O Flow Rat (Z>1) 1.83 ance in throttle - 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-]	e [-] 0 Insert row 0 Remove row 0 View Load Store		
 Flow Var Var 1 2 3 4 5 6 7 	w Resistance co esistance coef. iable flow resist Pressure rati	initial control in the other pef. C Flow Rat (Z>1) 1.83 iance in throttle – iance in throttle – 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-] 0 [-]	e [-] O Insert row O Remove row O View Load Store		

Рис. 8. Входные данные для Inlet Throttle

- 12. Указываем следующие параметры для Outlet Throttle:
- номинальная площадь поперечного сечения 0,80 мм²;
- площадь поперечного сечения блока дросселя 0,057 мм²;
- коэффициент сопротивления потоку 1,83.

Outlet Throttle имеет большую площадь поперечного сечения (диаметр), чем Inlet Throttle.

13. На данном этапе вводим исходные данные для дросселя Sump Throttle:

- номинальная площадь поперечного сечения 2,54 мм²;
- площадь поперечного сечения блока дросселя 0,10 мм²;
- коэффициент сопротивления потоку 1,6.

Element Name Needle	ок
• 1 DOF (x) \subset 3 DOF (x y z)	Cancel
Pigid Body, C. Elastic Body (v)	Help
	Accept
Moving mass 2.6 g	
Coulomb friction force 3 N	
Needle guide/seat	
guide seat	
Hollow needle	
Diameter of upper guide bore mm	
Squeezing fluid at needle closing	
Maximum lift of needle 0.3 mm	
Seat/Stop contact model	
Linear Pseudo-linear Nonlinear (Hunt-Crossley)	
Needle seat/stop	
seat stop	
Stiffness N/mm 400000 4	
Damping N.s/m 400	
Nozzle housing elasticity	
O User-defined O Program-calculated	
Geometric and Stiffness Data	

Рис. 9. Окно диалога ввода параметров стандартной иглы

14. Открываем окно ввода данных иглы (рис. 9):

- а) движущаяся масса 2,6 г;
- б) кулоновская сила трения 3 Н;
- в) диаметр направляющей иглы 4 мм;
- г) диаметр посадочного места иглы 1,7 мм;

д) если информация о демпфировании при закрытии иглы известна, то должен быть указан коэффициент демпфирования при сжатии жидкости. В противном случае указываем ноль. В этой ситуации никакого дополнительного демпфирования при закрытии иглы не будет;

е) жесткость и демпфирование для посадочного пояска иглы должны быть указаны. Эти параметры могут быть не известно точно, но должны быть указаны значения, основанные на опытных данных. Для примера указываем жесткость 400 000 Н/мм и демпфирование 400 Нс/м при посадке иглы. Если игла не имеет механических упоров, отключаем максимальный подъем иглы.

Примечание: Подъем иглы ограничен ходом поршня Control Piston, который связан с иглой через жесткое механическое соединение.

15. Задание исходных данных для утечек через иглу (рис. 10). Диаметр направляющей иглы можно не указывать, он уже задан автоматически. Зависимость кольцевого зазора от давления можно задать в пользовательской таблице.

E	lement	Name Nozzle Leak	(ок
	Pistor	Fluid Properties n diameter 0.1	004	m	Cancel Help
N	umber	of pistons			Accept
In	itial gaj	p length		mm	
G	ap leng Progra User-(gth: C Constant (C Variable (ir am-calculated annu defined annular gap	initial value) nitial length + pisto Ilar gap (complian o (standard volum	on lift) It volume) Ie)	
		Mean Pressure	Diametral Gap		
		bar	mm		
	1	1	0.004	Insert row	
	2	1000	0.007	Remove row	
	3			View	
	4			¥16₩	

Рис. 10. Окно диалога ввода для утечек иглы

16. Диалоговое окно задания данных сопла распылителя (рис. 11).

ment N	ame Nozzle Orifice		Paray Calculation	Cancel
	ulu Properties			J Help
Jumber	r of spray holes	4		Accort
Diamete	er of one spray hol	e 0.16	mm	Autepi
ength	of one spray hole		m	
Jozzle (diameter at sprav h	oles 0.9	mm	
	f needle seat	55		
ngie o	i liccule seat	100	ucy	
-C Pro	ogram-calculated F	low Area		
C El	w Coef. 🧿 Flow R	ate		
1 1 1 1 1				
6.00	inetant. Elow disch:	was coof	1.1	
© Co	instant. Flow discha	arge coef. 0	[-]	
© Co C Va - © Usi	instant Flow discha riable er-defined Flow Are	arge coef. 0	[-]	
ଜ Cc ୯ Va -ଙ Usi ଜ Eff	instant Flow discha riable er-defined Flow Are fective Cross-sectio lumetric Flow (Nozi	arge coef. 0 ea or Rate onal Flow Area zle Rate)	[-]	
© Cc C Va - © Usi © Eff C Vo Press	instant Flow discha riable er-defined Flow Are ective Cross-sectio lumetric Flow (Noza sure difference	arge coef. 0 ea or Rate onal Flow Area (le Rate) 100	[-]	
© Cc ℃ Va - © Usi © Eff ℃ Vo Press ☑ Fa	instant Flow discha riable er-defined Flow Are fective Cross-sectio lumetric Flow (Noz sure difference	arge coef. 0 ea or Rate onal Flow Area zle Rate) 100 n 1	l-1	
€ Cc C Va € Eff C Vo Press	instant Flow discha riable er-defined Flow Are rective Cross-section lumetric Flow (Nozz sure difference actor for 2nd colum Needle Lift	arge coef. 0 ea or Rate onal Flow Area (le Rate) 100 n 1 my*A	l-1	
© Co C Va ⊂ Va © Eff C Vo Press ⊽ Fa	instant Flow discha riable er-defined Flow Are fective Cross-section lumetric Flow (Nozz sure difference actor for 2nd colum Needle Lift mm	arge coef: 0 ea or Rate onal Flow Area de Rate) 100 n 1 my*A mm*2	[-]	
€ Cc C Va C Vsi C Vo Press V Fa	Instant Flow dischar riable er-defined Flow Are rective Cross-section lumetric Flow (Nozz sure difference actor for 2nd colum Needle Lift mm 0	arge coef. 0 ea or Rate onal Flow Area (le Rate) 100 n 1 my*A mm*2 0 0 0.0152	bar	
© Co C Va ⊂ Va © Eff C Vo Press ▼ Fa 1 2 3	instant Flow discha riable er-defined Flow Are fective Cross-section lumetric Flow (Noza sure difference actor for 2nd colum Needle Lift mm 0 0.022 0.045	arge coef: 0 ea or Rate onal Flow Area zle Rate) 100 n 1 my*A 0 0.0152 0.0279	Insert row Remove row	
€ Cc C Va - € Usi € Eff C Vo Press ▼ Fa 1 2 3 4	Instant Flow dischar riable er-defined Flow Are rective Cross-section lumetric Flow (Nozz sure difference actor for 2nd colum Needle Lift 0 0.022 0.045 0.067	arge coef. 0 ea or Rate onal Flow Area tle Rate) 100 n 1 my*A 0 0.0152 0.0279 0.039	bar bar Remove row View	
€ Cc C Va C Va € Eff C Vo Press F Fa 1 2 3 4 5	riable er-defined Flow Are rective Cross-section lumetric Flow (Nozz sure difference actor for 2nd colum Needle Lift mm 0 0.022 0.045 0.067 0.09	arge coef. 0 ar	bar Insert row Remove row View Load	
€ Cc € Va € Eff € Vo Press ▼ Fa 1 2 3 4 5 6	riable er-defined Flow Are rective Cross-section lumetric Flow (Nozz sure difference actor for 2nd column Needle Lift 0.022 0.045 0.067 0.09 0.112	arge coef. 0 arge coef. 0 ar	bar bar Insert row Remove row View Load	
€ Cc € Va € Eff C Vo Press ▼ Fa 1 2 3 4 5 6 7	riable er-defined Flow Are rective Cross-section lumetric Flow (Nozz sure difference actor for 2nd colum Needle Lift 0.022 0.045 0.067 0.09 0.112 0.135	arge coef. 0 arge coef. 0 ar	bar bar Insert row Remove row View Load Store	
€ Cc € Va € Eff € Vo Press ▼ F2 1 2 3 4 5 6 7	riable er-defined Flow Are rective Cross-section lumetric Flow (Nozz sure difference actor for 2nd column Needle Lift 0.022 0.045 0.067 0.09 0.112 0.135	arge coef. 0 ar	bar bar Insert row Remove row View Load Store	

Рис. 11. Диалоговое окно задания данных сопла распылителя

Возможны два варианта:

а) активировать Program-calculated Flow Area. В этом случае алгоритм BOOST Hydsim может быть использован для вычисления эффективного про-

ходного сечения сопла. Эта возможность здесь не рассматривается подробно, но может быть выполнена. Этот алгоритм предполагает, что коэффициент расхода определяется пользователем. Он может быть постоянным или функцией отношения давлений сопла. В качестве альтернативы коэффициент расхода может быть задан пользователем исходя из измеренной скорости потока при полном подъеме иглы и соответствующих перепадах давления. В соответствии с этим, коэффициент выходного потока будет рассчитываться и отображаться автоматически. Кроме того, задается угол посадочного конуса иглы (55 градураспыливающих отверстий (4) диаметр COB). количество И одного распыливающего отверстия (0,16 мм);

б) в качестве альтернативы можно задать непосредственно, если известно, эффективное проходное сечение сопла (например, внешние расчетные данные или измерения) в зависимости от подъема иглы. Активируйте Userdefined Flow Area or Rate и Effective Cross-sectional Flow Area. Ниже будет активирована таблица, и пользователь может ввести площадь эффективного сечения или объемную скорость в зависимости от подъема иглы или считать данные из внешнего ASCII файла. В нашем случае данные приведены в таблице на рис. 11.

17. Задание исходных данных для управляющего поршня Control Piston.

а) движущаяся масса управляющего поршня – 10,7 г;

б) кулоновская сила трения – 5 Н;

в) максимальный подъем управляющего поршня – 0,21 мм;

г) диаметр управляющего поршня – 4,3 мм.

Движение поршня вниз ограничено ходом иглы из-за жесткой связи между поршнем и иглой.

18. В рассматриваемом примере, электромагнитный клапан моделируется как управляемый дроссель переменного проходного сечения. Задается время и площадь поперечного сечения (Switch Valve).

В привязке к газораспределению сначала необходимо определить начальное состояние клапана, который может быть закрыт (valve closed) или открыт полностью (valve fully opened). В зависимости от выбранного начального состояния меняется порядок колонок таблицы Time/Crank Angle. Временные события могут определяться в абсолютном или относительном виде. Для относительного варианта последующее событие определяется относительно предыдущего. Абсолютный выбор времени может относиться к началу вычисления или времени перед верхней мертвой точкой процесса сгорания.

19. В таблице Time/angle (рис. 12) должно быть введено время, при котором клапан открывается или закрывается. В следующих двух таблицах задается время на открытие и закрытие клапана, и соответствующие значения эффективной площади поперечного сечения потока. Значения между заданными точками линейно интерполируются. Первоначальная площадь потока берется из эффективного поперечного сечения потока в соответствии с начальным состоянием (закрыто/открыто). Очевидно, что величины площади сечения потока

при полностью открытом клапане, в конце открытия клапана и начале закрытия должны быть равными.

ement Name Jonenoid Valve	Effective cross-sectional flow area my*A	
Eluid Properties	Scaling factor for 2nd column (my)	Cancel
	my*A of valve seat at opening	Help
Valve timing (start of switching)	Time/CA Area	
Initial state: 💿 Closed 🔹 Open	ms mm^2	
Timing data:	1 0 0 Insert row	
Reference: Calculation start C BTDC (firing)	Remove row	
- Time/Crank Angle (CA)	4 View	
Opening Start Closing Start	6 Load	
ms ms	6 Store	
1 1.8 Insert row	Data File	
Remove row	Automotic Delead Lice Default Data File Bath	
beal		
	Scaling factor for 2nd column (my)	
	my A of valve seat at closing	
	Time/CA Area	
	my A of valve seat at closing Time/CA Area ms mm^2	
	Time/CA Area ms mm^2 1 0 0.05892 2 0.136 0	
	Time/CA Area ms mm*2 1 0 0.05892 2 0.136 0 3 Remove row	
	Time/CA Area ms mm*2 1 0 0.05892 2 0.136 0 8	
	Time/CA Area ms mm^2 1 0 0.05892 2 0.136 0 3 View 1 4 Load Load	
	Time/CA Area ms mm^2 1 0 0.05892 2 0.136 0 8	
	Time/CA Area ms mm*2 1 0 0.05892 2 0.136 0 3	

Рис. 12. Входные данные для электромагнитного клапана

20. Все входные данные должны быть определены для каждого элемента нашей системы впрыска. Необходимо указать начальные условия. Чтобы сохранить равновесие системы в начале расчета необходимо:

a) давление в рампе 1500 бар в качестве начального условия указать для всех объемных элементов за исключением Spill Volume, для которого исходное состояние 1,5 бар (давление в Fuel Tank). Используйте Edit | Initial Conditions | Volume для автоматического определения начального давления для всех объемов (выберите объемные элементы перед установкой давления 1500 бар);

б) указать отрицательное начальное смещение Control Piston -0,088 мм (рассчитанное от действия сил на поршень и иглу). Кроме того, должен быть указан предварительный натяг пружины 2176 Н. Если предварительная нагрузка или начальное условие не определено (по умолчанию параметр равен нулю), то равновесие системы может быть достигнуто после определенного периода времени. Тем не менее, начальные давления в объемах высокого давления должны быть определены правильно. В противном случае в системе будут происходить высокочастотные колебания потока, и результаты расчета будут совершенно иные, чем в случае, с начальным динамическим равновесием.

21. На данном этапе приступаем к отбору выходных параметров. Выходной список параметров можно получить в Element | Store Results меню для каждого элемента. Типичные выходные параметры для форсунок Common Rail – давление в объемах, движение иглы и поршня, объемные расходы через входной и выходной дроссели и электромагнитный клапан, скорость впрыска, общее количество впрыскиваемого топлива, утечки через направляющую иглы и поршень, и т.д. Конечно, пользователь волен выбрать любой выходной параметр, который предпочитает. Следует избегать слишком большого количества выходных параметров, так как это может потребовать большого объема дискового пространства.

22. Для задания условий моделирования в падающем меню выбираем Simulation | Control. В открывшемся окне задаем:

- a) Domain: Time[c]
- б) Calculation step: 2e-07
- B) Time interval: 0.003

 Γ) Number of values to be stored: 300

23. Для задания свойств жидкости в падающем меню выбираем Model | Fluid Properties. Задаем дизельное топливо, для которого указываем постоянные свойства Constant Fluid Properties:

a. Bulk modulus [N/mm2]: 1630

b. Fluid density [kg/m3]: 865

c. Kinematic viscosity(cSt): 1.7

Пользователь может задать другие численные значения для констант или переменных свойств жидкости, если необходимо. Определение для переменных (зависящих от давления) уточненных свойств даст более точные результаты расчета и рекомендуется для практического применения.

4. Выполнение вычислений

Если все данные ввода, вывода и управления расчетом были введены, можно запускать расчет. Выбираем Simulation | Run. Если сообщение об ошибке не появляется на экране, введенные данные формально приемлемы и расчет начнется. Если GUI обнаруживает любые проблемы во время простой проверки совместимости, на экране появится сообщение об этом.

5. Результаты расчета

Выберите Simulation | Show Results, чтобы открыть IMPRESS Chart с деревом результатов расчетов (как показано на рис. 13). Альтернативно можно загрузить файл results.ppd из каталога /Boost_hyd/common_rail2wv.Case_1. Раскрывая любой из элементов дерева результатов можно отразить на экране графики изменения параметров, которые предварительно были выбраны для вывода результатов.

Рис. 13. Дерево результатов расчетов

6. Пример с результатами расчетов

На верхнем графике (рис. 14) изображено давление в рампе Rail Pressure (1500 бар), изменение давления в Junction, затем в Valve Volume, Control Volume, Nozzle Volume и Nozzle Orifice (давление перед соплами). Пока клапан соленоида закрыт давление во всех объемов остается постоянным (1500 бар). При открытии электромагнитного клапана, давление в объеме Control Volume резко падает вниз, так как скорость потока через Outlet Throttle выше, чем скорость потока через Inlet Throttle, нижний график. Давление в Junction и Nozzle Volumes начинает падать после определенного времени задержки. Так как эти объемы постоянно заполняются от Common Rail, давление в них поднимается через некоторое время, которое зависит от параметров элементов форсунки.

Как только разность давлений между объемами Nozzle Volume и Control Volume достигает давления открытия, так управляющий поршень, а за ним и игла распылителя поднимаются вверх (как показано на рис. 15, верхний график) и процесс впрыскивания топлива начинается. Скорость впрыскивания представлена на рис. 15, средний график. Движение управляющего поршня

Control Piston ограничивается его ходом (0,21 мм), поэтому ограничивается и подъем иглы во время впрыска. Продолжительность впрыска управляется электромагнитным клапаном и зависит от фактической нагрузки двигателя.

Когда электромагнитный клапан начинает закрытие, перекрывается поток топлива через выходной дроссель Outlet Throttle и давление в управляющем объеме Control Volume быстро повышается. Топливо поступает через входной дроссель Inlet Throttle в управляющий объем Control Volume. Вскоре, разность давлений между объемами Nozzle Volume и Control Volume падает до давления закрытия и игла закрывается.

Нижний график на рис. 15 показывает скорость и количество утечек топлива через направляющую иглы распылителя и управляющий поршень. Можно заметить, что утечки малы, по сравнению со скоростью впрыска (средний график). Тем не менее, количество утечек может быть весьма значительным, потому что утечки происходят непрерывно, а не только во время впрыска.

Рис. 14. Давление в Junction и объемах, скорость потока через входной и выходной дроссели и электромагнитный клапан

Рис. 15. Перемещение иглы и поршня, скорость впрыска и количество топлива и утечек

7. Анимация

Для выполнения анимации процесса впрыскивания, выберите Simulation | Animation \blacktriangleright | Nozzle Flow и активизируйте элемент Nozzle Orifice, как показано на рис. 16. Для анимации потока в распылителе нажмите кнопку ОК для подтверждения выбора. Для стандартных форсунок Common Rail предусмотрен расширенный вариант анимации. Кликните по значку Common Rail with 2/2 Way Valve, чтобы открыть окно, показанное на рис. 17. Укажите ключевые элементы модели инжектора: Inlet Throttle, Outlet Throttle и Control Valve. Расширенная модель анимации будет создана на основе выбранных элементов (см. рис. 18). Чтобы получить список соответствующих элементов, кликните в поле ввода соответствующего элемента (рис. 17). Выберите элемент из выпадающего меню.

В этом примере все элементы выбираются (все колонки, заполненные), как показано на рис. 18.

Nozzle Flow	_ 🗆 >
▼ Nozzle Orifice 21, "Nozzle Orifice" Control Show	ок
Common Rail with 2/2-Way Valve	Cancel
	Help
Unit Injector with SID Piston	Select

Рис. 16. Окно диалога для анимации впрыскивания

Common Rail with 2/2-Way Valve				
Nozzle	Inlet Throttle	Outlet Throttle	Control Valve	ОК
Nozzle Orifice (21)				Cancel
	Inlet Throttle (14) Sump Throttle (18) Dutlet Throttle (19)			Help

Рис. 17. Окно диалога для анимации форсунок Common Rail

Common Rail with 2/2-Way Valve				
Nozzle	Inlet Throttle	Outlet Throttle	Control Valve	OK
Nozzle Orifice (21)	Inlet Throttle (14)	Outlet Throttle (19)	Solenoid Valve (8)	Cancel
				Help

Рис. 18. Выбранные элементы анимации в диалоговом окне

Файла анимации данных будут храниться во вложенных папках с расширением .mod: <project_dir>/BOOST Hydsim /<model_name>. <case_name> /animation/common_rail2wv_nozzle_19.mod.

Чтобы включить анимацию форсунки, параметры впрыска должны быть указаны во входных данных диалога Nozzle Orifice/Spray Calculation.

Выберите <u>Spray Calculation</u>..... чтобы открыть окно для задания метода расчета параметров процесса впрыскивания (рис. 19).

Из выпадающих меню выберите соответствующие эмпирические алгоритмы (формулы) для вычисления среднего диаметра капель, угла конуса распыленной топливной струи и глубины проникновения топливного факела.

Nozzle Orifice 21 - Spray Calc	Ilation	_ 0
Droplet size calculation	Knight	ОК
Spray cone angle calc.	Arai, Tabata 💌	Cancel
Penetration calculation	Arai, Tabata 1	
inbowl swirl	1.5 [-]	

Рис. 19. Диалог расчета параметров впрыскивания

8. Результаты расчета распыливания топлива

Выберите соответствующие параметры впрыскивания (Sauter mean diameter, spray cone angle, spray penetration) в диалоговом окне выходных параметров сопла распылителя, как показано на рис. 20. Результаты расчета распыливания могут быть построены в окне Impress Chart (см. рис. 21). На верхнем графике показано изменение среднего диаметра капель распыленного топлива по Заутеру, на нижнем графике показаны угол конуса и длина распыленной топливной струи.

При анализе результатов расчета параметров распыленной топливной струи необходимо учитывать особенности смесеобразования в дизеле. При объемном смесеобразовании необходимы мелкое распыливание топлива и относительно большая длина распыленной топливной струи при ограниченном попадании топлива на стенки камеры сгорания. Для преимущественно пленочного смесеобразования не требуется дробления основной массы впрыскиваемого топлива на мелкие капли.

Рис. 20. Выходные данные сопла с расчетом впрыскивания

9. Запуск анимации

Для выполнения анимации, выберите Show... в диалоге анимации (см. рис. 16), чтобы открыть окно PP3 и загрузить файл анимации для рассчитанной модели, как показано на рис. 22. Другой, более длительный способ выполнения анимации, осуществляется через запуск постпроцессора PP3 и ручной загрузки файла анимации common_rail2wv_nozzle_19.mod (как показано на рис. 22).

Для управления анимацией доступны следующие кнопки:

- 1. **r** Reset
- 2. 🔍 Zoom
- 3. Change
- 4. K Step Backward
- 5. Play Backward
- 6. **Stop Animation**
- 7. Play Forward (Start Animation)
- 8. Step Forward

Рис. 22. Окно с РРЗ загруженного файла анимации

ЗАКЛЮЧЕНИЕ

Программа HYDSIM представляет собой инструмент для динамического анализа гидравлических и гидромеханических систем. Программа специально предназначена для моделирования систем впрыска высокого давления дизельных, бензиновых или работающих на альтернативных видах топлива двигателей. В основу HYDSIM заложены одномерные модели потока жидкости и двумерное представление механических частей. Результаты расчетов впрыскивания топлива в HYDSIM могут служить инструментом для более детального исследования процессов распыливания и смесеобразования топлива посредством таких инструментов как FIRE или ANSYS.

оглавление

ВВЕДЕНИЕ	3
МОДЕЛИРОВАНИЕ ТОПЛИВНЫХ СИСТЕМ В ВООЅТ НУДЅІМ	4
Моделирование аккумуляторной топливной системы с электрогид- роуправляемой форсункой	4
1. Описание BOOST Hydsim модели форсунки Common Rail	5
2. Основные этапы создания BOOST Hydsim модели форсунки Сот-	
mon Rail	7
3. Входные данные	8
4. Выполнение вычислений	17
5. Результаты расчета	17
6. Пример с результатами расчетов	18
7. Анимация	20
8. Результаты расчета распыливания топлива	22
9. Запуск анимации	23
ЗАКЛЮЧЕНИЕ	25